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Abstract. Description logics (DLs) are a family of logic-based knowledge
representation formalisms, which provide underlying semantics for modern
ontology languages such as OWL 2. Reasoners for DLs are mostly specialised
algorithms, which can answer questions such as whether an ontology as a
whole is consistent, whether a certain concept in an ontology can be non-empty,
or whether one concept subsumes another concept. Language extensions such
as support for concrete domains (e.g. numbers) have been proposed in the
past, but every extension typically requires the development of new reasoning
algorithms. Some extensions have in fact never been implemented. This paper
explores the use of CP technology for handling DL reasoning tasks. We
show that CP modelling languages make it easy to extend DLs with new
features, using a direct, high-level encoding into MiniZinc. Furthermore, our
experiments show that modern CP solvers based on Lazy Clause Generation
can be used as efficient DL reasoners. We present the first implementation of
a reasoner for a DL that supports concrete domains and aggregate functions.
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1 Introduction

Description logics (DLs) [6] are a family of logic-based knowledge representation
formalisms, which provide underlying semantics for modern ontology languages such
as OWL 2 [10]. A Description Logic defines axioms that state how certain concepts
are related to each other, where concepts can be considered sets of abstract objects
called individuals. Concepts are typically defined using constructs such as conjunction
and disjunction, as well as quantification over binary relations, so-called roles.

As an example, Fig. 1 shows a fragment of Gene Ontology (GO) [1]. It introduces
the concepts DomainCategory, GeneralisedStructure, AbstractStructure, DiabetogenicStruc-
ture, and Diabetes, and defines axioms that constrain their sub-concept relationships.
E.g., a GeneralisedStructure subsumes an AbstractStructure, which simply means that
all individuals that are classified as AbstractStructure are also classified as Generalised-
Structure. The class DiabetogenicStructure is defined as those individuals that are both
classified as GeneralisedStructure, and for which there exists a successor individual in
the IsCausallyLinkedTo binary relation that is classified as Diabetes.
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GeneralisedStructurevDomainCategory AbstractStructurevGeneralisedStructure

DiabetogenicStructure≡GeneralisedStructureu∃ IsCausallyLinkedTo.Diabetes

Fig. 1. A fragment of Gene Ontology (GO).

Ontology Reasoning. Description Logics serve as formal languages for ontologies,
describing complex concepts and relationships. In addition to mere notation, the
formal nature of the languages allows for certain reasoning tasks to be performed
automatically. Typical tasks check whether an ontology is consistent (i.e., whether
the axioms do not contradict each other), whether a certain concept is satisfiable
(i.e., whether the axioms allow the concept to be non-empty), or whether one concept
subsumes another concept. Automatic DL reasoners are important tools for maintain-
ing the quality of a large ontology and for deducing knowledge that is only encoded
implicitly in the axioms.

Several specialised DL languages have been defined, with different levels of expres-
sivity and, consequently, different computational complexity of the associated queries.
This ranges from basic languages such as EL [2], for which many reasoning tasks
can be performed in polynomial time, over ALC [25], for which concept satisfiability
is PSpace- or even ExpTime-complete (depending on further limitations), to highly
expressive languages that include support for so-called concrete domains [4, 22, 16]
(such as numbers or strings), where care must be taken to restrict the language in
order to even retain decidability.

Reasoning algorithms. Tableau calculi [6] are the mainstream reasoning algo-
rithms for expressive DLs (we will discuss related approaches in detail in Sec. 4).
Most modern ontology reasoners, such as HermiT [26] and Konclude [28], are based
on specialised tableau procedures. However, the efficiency of tableau-based algorithms
is still a bottleneck for large and complex ontologies. A major source of inefficiency
is the large search space generated by disjunctive constructs (such as existential
quantification). A further limitation of these algorithms is that any extension of the
language typically requires significant re-engineering of the reasoning algorithm. Due
to these limitations, only few implementations exist for highly expressive extensions
such as support for concrete numerical domains.

Contributions. The main contribution of this paper is a high-level encoding scheme
that allows us to translate ontologies modelled using expressive DLs into the constraint
modelling language MiniZinc [21]. We can then exploit the power of modern Constraint
Programming solvers to reason about ontology satisfiability, concept satisfiability, and
concept subsumption. We demonstrate the flexibility of our approach by extending
the encoding to support DLs with concrete domains and aggregate functions. To the
best of our knowledge our CP-based approach is the first implementation of reasoning
over such a language.

We discuss our implementation and present empirical results that show that
CP solvers are competitive with and sometimes outperform dedicated reasoning
algorithms on standard ontologies, and that they present a feasible implementation
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strategy to support concrete domains and aggregation (for which there is currently
no alternative implementation).

2 Description Logics

In this section we provide a brief introduction to the syntax and semantics of some
description logics (DLs), starting from a simple DL EL. Two extensions of EL are
described: a well-known DL ALC as well as a new DL that encompasses concrete
domains and aggregations over them, ELU(¬)(f,Σ). Finally, some core reasoning
tasks for DLs are introduced at the end of the section.

2.1 EL

The description logic EL was designed to be tractable [2], while being expressive
enough to represent knowledge in several large and widely-used biomedical ontologies
such as GALEN [23], Gene ontology (GO, see Fig. 1) [1] and SNOMED CT [27].

Let A and B represent concept names, Ĉ,D̂,... represent (anonymous) concept
descriptions, and R represent a role. An EL TBox (terminology box) T is a finite
set of axioms as defined in the bottom of Table 1.

The semantics of EL (and other DLs) is normally defined in terms of interpreta-
tions. Due to readability, the semantics is described using Set Theory. U denotes the
abstract domain or universe (a set of all individuals in the domain). An individual is
an element in a set. A concept name A is a set SA, where SA⊆U. A role name R is a
binary relation that maps individuals to individuals, i.e., an individual x is R-related
to an individual y, so y is called R−successor. In other words, it is a set of pairs of
individuals SR, where SR⊆U×U. A concept description Ĉ are defined through the
concept constructs listed at the top of Table 1. For example, Ĉ=AuBuC. Then
the semantics of Ĉ is defined as SĈ=SA∩SB∩SC.

An EL TBox T is in normal form if all axioms in T are of the following form:
uiAivB, Av∃R.B, and ∃R.BvA. Concept equivalence A≡B can be normalised
into two concept inclusion (subsumption) axioms AvB and BvA.

Table 1. The syntax and semantics of EL.

Concepts Syntax Semantics

top concept > U
atomic concept A SA

conjunction ĈuD̂ SĈ∩SD̂

existential restriction ∃R.Ĉ {x∈U|∃y :(x,y)∈SR∧y∈SĈ}
Axioms Syntax Semantics

concept inclusion (subsumption) ĈvD̂ SĈ⊆SD̂

concept equivalence Ĉ≡D̂ SĈ =SD̂

EL can be extended in several ways. On one hand, it has been extended by adding
new concept constructs to obtain more expressivity in describing the abstract domain
(concepts). We use the well-known DL ALC to describe such extensions in Sec. 2.2.
On the other hand, it can be extended to obtain more expressivity by adding support
for concrete domains (e.g., natural numbers). We illustrate such an extension with

DL ELU(¬)(f,Σ) in Sec. 2.3.
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2.2 ALC

One of the most well-known descriptions logics is ALC [25]. While it predates EL,
logically it can be seen as an extension of it. In addition to the constructs supported
by EL, ALC contains the bottom concept (⊥), concept disjunction (t), universal
restriction (∀), and concept negation (¬). The concept descriptions inALC are defined
through the concept constructs listed in Tables 1 and 2.

A TBox ELU(¬)(f,Σ) is a finite set of axioms as defined in Tables 1 and 2. We
restrict our attention ALC TBoxes in normal form, where all axioms are of the
following form: uiAivB, AvtiBi, Av∃R.B, ∃R.BvA, Av∀R.B, and ∀R.BvA.
Note that both A and B can be negated concepts.

Table 2. The extension syntax and semantics for ALC.

Concepts Syntax Semantics

bottom concept ⊥ ∅
concept negation ¬Ĉ U\SĈ

disjunction ĈtD̂ SĈ∪SD̂

universal restriction ∀R.Ĉ {x∈∆I|∀y :(x,y)∈SR→y∈SĈ}

2.3 ELU(¬)(f,Σ)

The description logic ELU(¬)(f,Σ) extends EL with concept disjunction (t) and
concrete domain (non-negative integer) features with aggregations. Table 3 shows the
main extension over EL, which is the introduction of features, which map abstract
individuals to (in our case) non-negative integers.

Concept descriptions in ELU(¬)(f,Σ) are defined through the concept constructs
in Table 3, where f represents a (functional) feature and ./ respresents a relational
operator (a binary predicate). The semantics of aggregation functions is defined using

multisets [8]. A ELU(¬)(f,Σ) TBox is a finite set of axioms as defined in Table 3.

Table 3. The syntax and semantics of ELU(¬)(f,Σ).

Concepts Syntax Semantics

concrete domain ./.(F1,F2)
{x ∈ U|∃d1, d2 ∈ D : (x, d1) ∈ SF1 ∧ (x, d2) ∈
SF2∧(d1,d2)∈S./}, where ./∈{≥,<,≤,>,=,6=} and
S./⊆D×D

Features Syntax Semantics

atomic feature f U�D
natural number d d

aggregation Σ(R◦f)

{
Σ(M

(R◦f)
x ), if M

(R◦f)
x is a multiset

undefined, otherwise

where M
(R◦f)
x = Jd|∃y : (x,y)∈SR ∧ f(y) = dK and

Σ∈{sum, count, min, max}
Axioms Syntax Semantics

concept inclusion ĈvD̂ SĈ⊆SD̂

concept definition A≡D̂ SA=SD̂

In order to retain decidability, some syntactic restrictions are placed on ELU(¬)(f,Σ).
The syntactic restrictions are:

1. ELU(¬)(f,Σ) allows only acyclic TBoxes [3]. A TBox T is called acyclic if there
are no cyclic dependencies between its concept names, i.e., concept names are
neither defined directly nor indirectly in terms of themselves through axioms in T .
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2. ELU(¬)(f,Σ) allows negation to be only in front of concept names.
3. Negation (¬A) is not allowed on the left hand side of concept inclusion axioms.
4. Each feature needs to have a finite range of values, e.g., for a feature weight,

0≤weightI(x)≤d for any individual x, where d is natural number.
5. The use of concept equivalence axioms is restricted to definitions of concept names.

The semantics of ELU(¬)(f,Σ) is defined using Set Theory. D is the concrete
domain. For our work, we consider D to be a domain of natural numbers. In addition,
F is constructed using the feature constructs in Table 3. F is a set of pairs of an
abstract individual and a concrete individual SF , where SF ⊆U×D. A feature name
f is a partial function f :U�D.

The semantics of aggregations is defined in terms of multisets of concrete do-

main values. The mapping M
(R◦f)
x is, for each abstract individual x, the multi-

set of feature values f of its R-successors. For example, the concept description
= .(steps,sum(exercise◦steps)) of axiom A6 in Fig 3 means that any individual in
this concept needs to have steps-value equal to the sum of steps-values of exercise-
successors. The multiset exercise◦steps is J4000,3000,3000K, where there are three
exercise-successors and each successor has steps-value 4000, 3000, and 3000 respectively.
Thus, the sum value of the multiset exercise◦steps is 10000.

An ELU(¬)(f,Σ) concept description is in negative normal form (NNF) when

negation appears only in front of concept names. An ELU(¬)(f,Σ) TBox is in NNF
when all of its axioms are in the following normal form: AvB, uiAivB, AvtiBi,
Av∃R.B, Av./.(F1,F2), A≡uiBi, A≡tiBi, A≡∃R.B, and A≡./.(F1,F2). Note
that only B can be concept negation, but not A.

Let us illustrate the usefulness of concrete domains in description logics with the
help of an example. The ontology in Fig. 2 models daily fitness activities. For example,
Treadmill is an exercise machine that a person may use for one hour (represented
by feature hours) to get 4000 steps (represented by feature steps) and 800 calories
burnt (represented by feature calburn). The ontology also defines a training goal
(GoalState) of between 3 and 5 hours of exercise, more than 10,000 steps, at least
2,000 calories burnt, and reaching a maximum heart rate (represented by feature HR)
of has-successors of at least 128 beats per minute.

Treadmill≡= .(hours,1) u≥ .(steps,4000) u≥ .(calburn,800) (A1)

FlexStrider≡= .(hours,1) u≥ .(steps,3000) u≥ .(calburn,700) (A2)

CrossTrainers≡= .(hours,1) u≥ .(steps,3000) u≥ .(calburn,750) (A3)

GoalState≡≥ .(hours,3) u≤ .(hours,5) u
≥ .(steps,10000) u≥ .(calburn,2000) u
= .(HR,max(has◦HR)) u≥ .(max(has◦HR),128) u
= .(count(has◦HR),3) (A4)

Fig. 2. An ELU(¬)(f,Σ) ontology about daily fitness.

This static ontology is then combined with a stream ontology, a representation
of the actual exercise performed by one person during a certain time window (e.g.
obtained through a fitness tracking device). In this example, we have chosen a window
size of three activities.
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CurrentStateAv ∃ exercise.Treadmill u= .(id,1) u= .(HR,100) u
= .(hours,sum(exercise◦hours)) u= .(calburn,sum(exercise◦calburn)) u
= .(steps,sum(exercise◦steps)) u= .(count(exercise◦steps),1) u
= .(count(exercise◦hours),1) u= .(count(exercise◦calburn),1) (A5)

CurrentStateBv ∃ exercise.FlexStrider u= .(id,2) u= .(HR,110) u... (A6)

CurrentStateCv ∃ exercise.CrossTrainers u= .(id,3) u= .(HR,128) u... (A7)

CurrentState≡ ∃ has.CurrentStateA u∃ has.CurrentStateB u∃ has.CurrentStateC u
= .(hours,sum(has◦hours)) u= .(calburn,sum(has◦calburn)) u
= .(steps,sum(has◦steps)) u= .(HR,max(has◦HR)) u
= .(count(has◦hours),3) u= .(count(has◦calburn),3) u
= .(count(has◦steps),3) u= .(count(has◦HR),3) (A8)

CurrentStatev GoalState (A9)

Fig. 3. A stream ontology recording daily fitness activities.

The stream ontology (Fig. 3) models three activities (CurrentStateA, CurrentStateB,
and CurrentStateC) and combines them into CurrentState. The id feature is used to iden-
tify each activity. CurrentStateA, for instance, represents that a person has exercised
on the Treadmill with a heart rate of 100 for one hour. Aggregate functions are used
to link CurrentState with its component activities, e.g. by summing over their hours
and calories, and taking the maximum of their heart rate features.

We can now use ontology reasoning to check whether a person achieves her goal.
We combine the static ontology with a concrete stream ontology (for one time window)
and then check whether CurrentState is a subclass of GoalState.

2.4 Reasoning Tasks

Consistency Checking is used to determine whether T is consistent [6]. T is
consistent if there exists a model I of T that satisfies all axioms in T . Otherwise,
T is inconsistent.

Concept Satisfiability Checking is used to ensure that a particular concept is
satisfiable w.r.t T when T is consistent [6]. A concept description Ĉ is satisfiable
w.r.t T , if there exists a model I of T such that SĈ is not empty. Otherwise, concept

description Ĉ is not satisfiable.

Concept Subsumption Checking checks whether one concept is more general
than another [6]. If a concept description Ĉ is subsumed by a concept description
D̂ w.r.t T , i.e., T �ĈvD̂, then SĈ⊆SD̂ is true for all models I of T .
ALC is closed under negation, hence it supports full subsumption checking. On

the other hand, ELU(¬)(f,Σ) is not closed under negation, we can only perform
limited concept subsumption checking, where only concept names are allowed as
subclasses. To check subsumption Av Ĉ, we can convert and negate it to Au¬Ĉ
and check whether this concept is unsatisfiable. Since we need to negate Ĉ, Ĉ cannot
contain existential quantifications (∃).

3 Description Logics Reasoning via MiniZinc Encoding
We propose a DL reasoning algorithm by encoding an ontology into a MiniZinc model,
which can then be solved by CP solvers. Our encoding scheme translates concepts
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and roles in Tables 1, 2, and 3, in a direct and succinct way, to set and array variables
in MiniZinc respectively. Importantly, our encoding into MiniZinc has linear time
and space complexity.

In our encoding scheme, individuals are encoded as positive integers. Moreover,
we encode the top concept > (the superclass of all concepts) and a concept A as
set variables of abstract individuals T and A respectively. Hence, A subset T is true
for all concepts A. A role R is a binary relation that maps abstract individuals of
one concept (set) to abstract individuals (successors) of another concept (set). It is
encoded as an array of sets R, where indices i are individuals in one set and the set R[i]
contains the R-successors of individual i. A (functional) feature f maps an abstract
individual to a natural number. It is encoded as an array of natural numbers f, whose
indices are individuals in its domain, and the natural number f[i] is the f-value of
individual i. Our encoding scheme closely follows the semantics of description logics.

3.1 MiniZinc Encoding for EL

Without loss of generality, we assume an EL TBox T is in normal form (Sec. 2.1),
where axioms in T can be of only three cases: (1) uiAivB, (2) Av∃R.B, and (3)
∃R.BvA. T can be encoded by applying the following encoding rules. Let i be an
individual, and n,m,k non-negative integers. Axioms in T are encoded as follows:

EL1 For every axiom ÂvB̂ (i.e., unAnvtmBm),

constraint (A1 intersect ... An subset B1 union ... Bm) (3.1)

This rule is straightforward since the conjunction (resp. union) of concept names
can be easily translated into as intersect (resp. union) operations of sets
Ai, and the subclass relation v can be translated into a subset constraint in
MiniZinc.

EL2 For every axiom Av∃R.B∈T ,
constraint forall (i in T) (3.2)

(i in A -> card(R[i] intersect B) >= 1)

The subclass relation v is encoded into an implication: If an individual i is in
A, then the cardinality of the intersection of R-successors of i and B is at least 1.

EL3 Similar to the above rule, for every axiom ∃R.BvA∈T ,
constraint forall (i in T) (3.3)

(card(R[i] intersect B) >= 1 -> i in A)

3.2 MiniZinc Encoding for ALC

Similarly, for an ALC TBox T in normal form, there are only six types of axiom: (1)
uiAivB, (2)Av∃R.B, (3) ∃R.BvA, (4)AvtiBi, (5)Av∀R.B, and (6) ∀R.BvA.
For the first four types, the encoding rules are the same as those for EL (note (4) can
be encoded using rule 3.1). For (5) and (6), the following encoding rules are introduced:

ALC1 For every axiom Av∀r.B∈T (type (5)),
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constraint forall(i in T) (i in A -> R[i] subset B) (3.4)

ALC2 For every axiom ∀r.BvA∈T (type (6)),

constraint forall(i in T) (R[i] subset B -> i in A) (3.5)

The negation of a concept A can be encoded as (T diff A), where diff is set
difference. As can be seen, it is easy to extend the encoding scheme for EL to support
ALC, and the encoded MiniZinc constraints closely follow the semantics of the DL.

3.3 MiniZinc Encoding for ELU(¬)(f,Σ)

ELU(¬)(f,Σ) extends EL with concrete domains and aggregations over them. An

ELU(¬)(f,Σ) TBox in negation normal form contains only axioms of the forms: (1)
uiAivB, (2) AvtjBj, (3) Av∃r.B, (4) Av ./.(F1,F2), (5) A≡uiBi, (6) A≡tiBi,
(7) A≡∃R.B, and (8) A≡ ./.(F1,F2). The encoding for (1)–(3) is the same as for
EL and ALC.

In the following we describe the encoding rules for (4) and (8), which involve
concrete domains, features, and aggregation. Each feature f is encoded into an array
f that maps individuals to integers. In order to handle the aggregations (Σ(R◦f)),
we introduce variables as follows:

– x Σ R f be an array of natural numbers for each aggregation, where Σ ∈
{sum,count,max,min}. It contains the result of aggregating over the multiset
for each individual (indices of the array).

– sx Σ R f be a slack variable, which is an array of natural numbers for each
aggregation count and sum, i.e., Σ∈{sum,count}.

– bx Σ R f be an array of Boolean variables for each aggregation max and min, i.e.,
Σ∈{max,min}. The value of each array index is true if the value of x Σ R f is
in its multiset. Otherwise, the value is false.

– ub array be a function that returns the maximum value of an array.

The following describes the encoding scheme for concrete domain and aggregations:

ELF1 Initialisation: for every R, f and aggregation Σ∈{min,max,sum,count}, intro-
duce x Σ R f, sx Σ R f, bx Σ R f. Additionally, the following constraints will
also be created for handling aggregations and their interactions.

constraint forall(i in T)( x_count_R_f [i]) = (3.6)
card(R[i]) + bool2int( bx_max_R_f [i]) + bool2int( bx_min_R_f [i])) +
sx_count_R_f [i]

constraint forall(i in T)( x_sum_R_f[i] = (3.7)
sum(j in R[i])

(if (j in R[i]) then f[j] else 0 endif) +
sx_sum_R_f [i])

constraint forall(i in T) ( (3.8)
(x_min_R_f[i] = min(j in R[i])

(if (j in R[i]) then f[j] else ub_array(f)+1 endif )) ∨
(x_min_R_f[i] < min(j in R[i])

(if (j in R[i]) then f[j] else ub_array(f)+1 endif) ∧
bx_min_R_f [i]));
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constraint forall(i in T)( (3.9)
(x_max_R_f[i] = max(j in R[i])

(if (j in R[i]) then f[i] else 0 endif )) ∨
(x_max_R_f[i] > max(j in R[i])

(if (j in R[i]) then f[i] else 0 endif ]) ∧
bx_max_R_f [i]))

constraint forall(i in T) (3.10)
( sx_sum_R_f [i] >= xmin_R_f[i] * sx_count_R_f [i])

constraint forall(i in T) (3.11)
( sx_sum_R_f [i] <= xmax_R_f[i] * sx_count_R_f [i])

constraint forall(i in T) (3.12)
(x_min_R_f[i] <= x_max_R_f[i])

ELF2 For every axiom Av ./.(F1,F2)∈T (type (4)),
constraint forall(i in A) (tran(F1) ./ tran(F2)) (3.13)

where ./∈{≥,<,≤,>,=,6=}, and the function tran(Fk) is defined as follows

tran(Fk)=


f[i] (i) if Fk=f (Fk is a feature)

d (ii) if Fk=d (Fk is an integer value)

x Σ R f[i] (iii) if Fk=Σ(R◦f) (Fk is an aggregation)

Let us consider each case as follows:
(i) A functional feature is translated into an array mapping abstract individuals to
integers f. Therefore, tran(F) is encoded into f[i].
(ii) A natural number is directly translated into a natural number. Therefore, tran(F)
is encoded into d such that d is a natural number.
(iii) An aggregation is translated into the corresponding MiniZinc array. The array
aggregates (with aggregation function Σ∈{sum,count,max,min}) the feature values of
the abstract domain individuals (indices of the array).

However this may not be enough, and sometimes additional R◦f-successors need
to be introduced to satisfy the concrete domain constraints. To account for this
additional contribution to an aggregation, slack variables, encoded as sx Σ R f, are
introduced to hold the aggregated value of all these additional successors, without
actually introducing abstract individuals. A slack variable thereby corresponds to the
slack value that is left in the concrete domain constraints introduced by [8].

For case (iii) where tran(F) is encoded into x Σ R f[i], we next consider each
aggregation as follows.
count: encoded into a constraint 3.6. The first part of the constraint card(R[i])
counts actual elements in the multiset. sx count R f[i] is a number of additional
R◦f-successors (i.e., slacks) to satisfy the concrete domain constraints. bx min R f[i]

(resp. bx max R f[i]) represents an additional R◦f-successor that may be required
to satisfy the min (resp. max) constraint.
sum: encoded into a constraint 3.7. The first part of constraint
sum(j in R[i])(if (j in R[i]) then f[i]else 0 endif) sums the value of elements
in a multiset. sx sum R f[i] is a value of additional R◦f-successors to satisfy the
concrete domain constraints.
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min: encoded into a constraint 3.8. The first disjunct is the case that the result of
min function is in the multiset. The second disjunct is the case that the result of
min function is not in the multiset. Then x min R f[i] can be assigned by a natural
number that is less than the result of min function over actual individuals in a
multiset and bx min R f[i] is a signal that is used in the count function since the
count function has to increment when bx min R f[i] is true.
max: is encoded similarly to min.
count and sum: Constraints 3.10 and 3.11 need to be added to ensure that the average
value of elements in a multiset is between min and max.
min and max: Constraint 3.12 needs to be added to ensure that the min value is less
than or equal to the max value.

Concept definitions (≡, types (5)–(8)) are be encoded into equivalences (= for
sets, <-> for individuals). For example, A ≡ uiBi is encoded into a constraint
A = B1 intersect B2 intersect ....

ELF3 To check the satisfiability of concept A, a constraint card(A) > 0 is added. To
check subsumption of AvB, a constraint card(A intersect (T diff B)) > 0 is added.

Fig. 4 below shows the corresponding MiniZinc model generated by our encoding
scheme for the fitness ontology in Fig 2.

constraint forall(i in T)((i in Treadmill) <->
(( hours[i] = 1) ∧ (steps[i] = 4) ∧ (calburn[i] = 800))

);
constraint forall(i in T)((i in FlexStrider ) <->

(( hours[i] = 1) ∧ (steps[i] = 3) ∧ (calburn[i] = 700))
);
constraint forall(i in T)((i in CrossTrainers ) <->

(( hours[i] = 1) ∧ (steps[i] = 3) ∧ (calburn[i] = 750))
);
constraint forall(i in T)((i in GoalState) <->

(( hours[i] >= 3) ∧ (hours[i] <= 5) ∧
(steps[i] >= 10) ∧ (calburn[i] >= 2000) ∧
(HR[i] = max (j in has[i])

(if (j in has[i]) then HR[j] else 0 endif )) ∧
(max (j in has[i])

(if (j in has[i]) then HR[j] else 0 endif) >= 128) ∧
(card (has[i]) = 3))

);

Fig. 4. The MiniZinc model for the fitness ontology in Fig 2.

3.4 Symmetry breaking and search

The encodings presented translate each syntactic construct of a DL into a correspond-
ing MiniZinc construct. In conjunction with a suitable encoding of the reasoning task,
we can therefore use the readily available MiniZinc solvers as ontology reasoners.

For a CP expert, it will however become clear very soon that the encoding
introduces symmetry by identifying abstract individuals with natural numbers. In any
solution to theMiniZincmodel, we can swap the names of any pair of individuals to pro-
duce again a solution, as long as we take care and also swap all of their feature values.

The encoding can therefore be extended with symmetry breaking constraints,
avoiding the unnecessary exploration of symmetric states by the constraint solver. In
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general, breaking value symmetries like this one can be achieved by imposing a lex-
icographic order [i in A, i in B, i in C, ...] >= [i+1 in A, i+1 in B, i+1 in C, ...], where
i ranges over the possible set elements and A,B,C,... are the set-valued variables.

We chose to implement simpler constraints to break only some of the symme-
try, depending on the reasoning task. When testing satisfiability of a concept A:
Instead of the constraint card(A) > 0, we can force individual 1 to be in A without
loss of generality. In addition, we can enforce that forall (i in 2..n) (i in A -> i-1 in A),
where n is the total number of individuals (since all other individuals are symmetric).
When testing subsumption AvB: Since we prove subsumption by testing card(A

intersect (T diff B)) > 0, we can use the same symmetry breaking constraints as above
(since A cannot be empty). In addition, we know that individual 1 cannot be in B, so
we can add that constraint. Furthermore, we can add the constraint 2 in B \/ card(B)=0,
since all other individuals are still symmetric.

The experiments in Sec. 5 show that these symmetry breaking constraints have
a dramatic effect on the runtime of the solver.

Another point to note is that MiniZinc supports the declaration of search heuris-
tics, suggesting an order in which the solver should try labelling variables during the
search. The structure of ontologies suggests a search heuristic that attempts to add
one individual at a time to each concept in turn (rather than trying to “fill up” a
concept before adding individuals to another concept).

In particular in the case of testing subsumptionAvB, we know thatB must either
be empty or contain individual 2 (since it cannot contain 1, see above, and all other
individuals are symmetric). Thus, we can use a heuristic that will first try to add 2 to
B, and in the case of failure the symmetry breaking constraint will force B to be empty.

4 Related Work

The most widely used class of algorithms for ontology reasoning over expressive DLs
such as ALC are based on tableau calculi [6, 7]. These algorithms have been imple-
mented in many the-state-of-the-art reasoners such as FaCT++ [29]. Over the years,
a number of optimisation techniques and specialised reasoning algorithms have been
developed such as Absorption [6], hyper-tableau [19, 18, 20], which is implemented in
an ontology reasoner called HermiT [26], and tableau calculus enhanced with sophisti-
cated preprocessing methods and saturation, which is implemented in Konclude [28].

Nonetheless, tableau-based algorithms still exhibit inefficiencies when they are
used to perform reasoning on large ontologies, which contain many disjunctions (t),
existential quantifications, qualified number restriction, or concrete domains, such
as the Genomic CDS ontology [24]. These disjunctive constructs cause inefficiency
in tableau-based algorithms, because their non-deterministic expansion rules lead to
exponential search spaces [19, 18, 20]. In addition, qualified number restrictions and
concrete domains can increase the search space exponentially [5].

Aggregation over concrete domains was proposed in the logic EL(Σ) [8], which
can handle functions such as count and sum (but not both at the same time). A
tableau-based algorithm was proposed for concept satisfiability of EL(Σ), for reason-
ing on the abstract domain and for creating conjunctions of aggregations, features,
and predicates as constraints (concrete domain reasoning). This conjunction can
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be subsequently decided by linear or mixed integer programming solvers. However,
reasoning support for this logic has not been implemented.

Recently several approaches have been proposed to exploit SAT- and SMT-based
solving for DL reasoning. Our work is similar in that we also exploit mature solving
techniques, in this case Constraint Programming (CP).

In order to use SAT solvers, a SAT encoding approach for an ontology based on
the description logic ALCN has been proposed [17]. This approach transforms an
ALCN ontology in negation normal form (NNF) into propositional logic formulas
in conjunctive normal form (CNF). A SAT solver is then used to check satisfiability
of the propositional logic formulas. An SMT-based encoding approach has been pro-
posed for a more expressive description logic ALCQ [11], where an ALCQ ontology
is encoded into a SMT formula with Theory of Costs (SMT(C)) [9]. The Theory of
Cost is used to handle qualified number restriction (Q).

A common drawback of the above approaches is that their encoding scheme can
lead to an exponential number of clauses in CNF due to number restrictions. The
SMT-based approach [11] may produce an SMT model exponential in size of an on-
tology that contains nested qualified number restrictions and/or nested subsumption
relationships. For example, axioms Aiv ≥2R.Ai+1, where i∈1..n, are a series of
nested at-least qualified number restrictions, will lead to an exponential blow-up. In
comparison, our encoding into set-based MiniZinc models (which can be extended
to ALCQ) is linear in the size of the original ontology.

Another approach, called Intelligent Tableau [30], uses QBF solvers to improve
performance on highly disjunctive ontologies. The main idea is to perform reasoning
in tableau algorithm style but use a Quantified Boolean Formulas (QBF) solver
to lead the expansion of the search tree for existential and universal quantification.
Implemented in the LIGHT reasoner, this approach also incorporates global learning,
including Unsat-learning, Sat-learning and Unknown-learning. Their evaluation shows
significant improvement over previous, tableau-based approaches. LIGHT supports
ALC and perform ontology consistency checking. However, LIGHT needs to feed
a whole set of new propositional logic formulas to the QBF solver each time. This
means the learned clauses do not survive to be used in subsequent invocations of
the QBF solver. Our approach translates the entire ontology into a single constraint
model, so that learning solvers can take advantage of a more global perspective.

5 Empirical Evaluation

We conducted two main evaluations. The first evaluation is to show that our approach
is competitive with tableau reasoners. For this evaluation, we performed consistency
checking on ALC ontologies to evaluate our approach against two of the fastest reason-
ers, HermiT [26] and Konclude [28]. The second evaluation is to show the effectiveness
of our approach for handling concrete domain and aggregation. We performed an
empirical test on limited concept subsumption testing of ELU(¬)(f,Σ) ontologies.

We have implemented the encoder MiniZincEncoder in Java to encode an on-
tology into a MiniZinc model. In the following, runtimes do not include the times
needed for pre-processing and compiling the MiniZinc models to solver-dependent
FlatZinc models since these times are less than a second in all cases.
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A runtime limit of 300 seconds was used for the first evaluation. We limited a
runtime of 20 seconds for the second evaluation. All results presented in this section
have been obtained on a 64bit quad-core Intel Core i7 2.7GHz machine, with
16GB of RAM under MAC OS X 10.11.4. We used MiniZinc version 2.0.121.

5.1 Evaluation of ALC

For the first evaluation, we perform consistency checking on ALC ontologies.

We generated MiniZinc models using our MiniZincEncoder, and then solved
the models using Opturion CPX (ocpx)2 (v. 1.0.2) and chuffed3, which are lazy
clause generation CP solvers, and Gecode4 (v. 4.4.0). We compare the runtimes of
our system with those of state-of-the-art tableau-based reasoners HermiT5 (v. 1.3.8)
and Konclude6 (v. 0.6.2). The LIGHT reasoner [30] is not available on Mac OS X,
hence is not included in this evaluation. The SMT-based reasoner [11] in not included
due to excessive errors caused by URIs and special symbols.

We used two different sets of benchmarks to test our encoding. Ontologies in the
first set (“jnh”) contain many concept disjunctions [30], but no existential quantifi-
cations. In terms of metric values, SUPDCHN (number of chains of disjunctions in
super-concepts) [15] for this set ranges between 71 and 77, and DISJ (number of
disjunctions in the ontologies) ranges between 741 and 795. It has been generated by
converting SAT benchmarks [12] into OWL syntax. The second set of benchmarks
(“k XX”) come from Tableaux’98 [13]. Ontologies in this set contain many existential
quantifications (EF (existential quantifications) [14] ranges between 363 and 1,423)
but no disjunctions. These datasets demonstrate how constructs such as chains of
disjunctions and existential quantification can lead to inefficiencies in tableau-based
reasoners. The name of each ontology cannot express a satisfiability result. For
example, some ontologies (e.g., k d4 sat 09 and 10) are actually unsatisfiable.

The results of this evaluation are presented in Table 4 (time measured in seconds,
“to” stands for time out). The results show that the approach presented in this paper
(columns ocpx, chuffed, and gecode) clearly outperforms the dedicated ontology
reasoners. This shows that for ontologies with highly disjunctive structure or a sig-
nificant number of existential quantifications, tableau-based reasoners struggle to
perform well, in particular in the case of inconsistent ontologies. On the other hand,
CP-based techniques, especially those based on clause learning (such as ocpx and
chuffed) can demonstrate their advantages.

While this set of benchmarks is by no means exhaustive, it demonstrates that
the CP4DL approach is feasible and effective, and that clause learning solvers are
crucial for achieving high reasoning performance on difficult ontologies.

1 http://www.minizinc.org
2 http://www.opturion.com/#!cpx/ch52y
3 https://github.com/geoffchu/chuffed
4 http://www.gecode.org/
5 http://www.hermit-reasoner.com/
6 http://www.derivo.de/en/products/konclude.html
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Table 4. Comparison of ontology consistency checking time on ALC ontologies.

Ontologies ocpx chuffed gecode HermiT Konclude SAT?

sat-jnh204.owl 0.117 0.041 0.075 9.426 to Y
sat-jnh212.owl 0.159 0.039 0.121 116.731 to Y
sat-jnh220.owl 0.181 0.041 0.188 0.431 to Y
unsat-jnh16.owl 0.568 0.055 0.499 66.063 to N
k d4 sat 09.owl 0.447 0.157 29.820 to 32.542 N
k d4 sat 10.owl 0.43 0.176 41.618 to 41.113 N
k d4 unsat 09.owl 0.469 0.102 0.198 to 3.506 N
k d4 unsat 10.owl 0.430 0.122 0.400 to 5.315 N
k d4 unsat 12.owl 0.215 0.169 0.75 to 11.957 N
k d4 unsat 13.owl 0.238 0.184 0.726 to 17.919 N
k poly sat 09.owl 1.127 0.149 62.151 to 12.509 Y
k poly sat 10.owl 1.519 0.174 105.948 to 16.730 Y
k poly sat 12.owl 1.208 0.238 165.606 to 35.800 Y
k poly sat 13.owl 0.662 0.264 73.033 to 63.389 Y
k poly unsat 09.owl 0.425 0.149 to 8.346 10.244 N
k poly unsat 10.owl 4.106 0.173 103.845 10.918 18.013 N
k poly unsat 15.owl 0.842 0.331 to 84.591 107.831 N
k poly unsat 16.owl 1.93 0.387 to 99.268 167.877 N

5.2 Evaluation of ELU(¬)(f,Σ)

This set of experiments evaluates the performance of the CP4DL approach on
ELU(¬)(f,Σ) ontologies. Since there are no other reasoning algorithms for ontologies
with concrete domain and aggregation, and no public data sets for these ontologies,
we only aim to show the feasibility of the approach.

The reasoning task tested here is Limited Concept Subsumption Checking, i.e.,
for a given ontology and two concepts A and B, check whether A is a subclass of
B. To check this, as discussed in Sec. 3.3, we add the negation of the subsumption
as an axiom and prove unsatisfiability. The negation is encoded as the constraint
card(A intersect (T diff B)) > 0.

The evaluation in Sec. 5.1 showed that chuffed outperformed all other solvers.
We therefore only report results for chuffed here.

We generated 1,000 ELU(¬)(f,Σ) ontologies to test our approach. These ontologies
are similar to the ontology in Figs 2 and 3, with randomised HR-values of the concepts
CurrentStateA, CurrentStateB and CurrentStateC, and randomised hours-value, steps-value
and calburn-value of Treadmill, FlexStrider and CrossTrainers. The random values for HR
are between 100 and 220 (a normal range for somebody who is exercising). The
random values for hours range from 1 to 3. The steps are calculated from the hours,
where the average steps is 4000 per hour. Finally, the calburn is calculated from steps,
where the average calories burned is 0.05 per step. The generated test set consists
of 762 satisfiable cases and 238 unsatisfiable cases.

The base line for our experiments is (1) a basic model which is simply the
result of the MiniZincEncoder, without any symmetry breaking constraints or search
heuristics. We compare the performance of this basic model with (2) the basic model
plus symmetry breaking, (3) the basic model plus search heuristic, and (4) the basic
model plus both symmetry breaking and search heuristic (as discussed in Sec. 3.4).

The results of the experiments are shown in Figs 5 and 6. The version with
both symmetry breaking and search heuristic is the clear winner, and shows almost
constant, low runtime. If we analyse the results more carefully, we can see that for
satisfiable instances (Fig. 5), the search heuristic is crucial for performance, while
symmetry breaking has a lesser effect. For unsatisfiable instances (Fig. 6), we get
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the opposite picture: symmetry breaking speeds up the reasoning dramatically, while
the search heuristic alone does not have any clear positive effect. The combination
of the two techniques seems crucial to achieve robust performance across satisfiable
and unsatisfiable instances. The empirical evaluation confirms that the symmetry
breaking and search heuristic make our approach more effective.
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Fig. 5. Comparison of models with Chuffed: SAT ontologies.
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Fig. 6. Comparison of models with Chuffed: UNSAT ontologies.

6 Conclusion and Future Work

Description Logics are fundamental knowledge representation formalisms for Seman-
tic Web ontologies. A number of description logics have been proposed that span
a spectrum of expressivity. The development of a new, expressive description logic
usually requires the development of new, specialised reasoning algorithms/systems.

In this paper, we present CP4DL, an alternative approach to ontology reasoning
by exploiting modern CP techniques. Ontologies are encoded into MiniZinc models in
a direct and succinct way. Existing CP solvers can then be readily applied to perform
ontology reasoning without modification. We illustrate our CP-based reasoning
approach through the encoding of three description logics of varied expressivity. One
of the logics, ELU(¬)(f,Σ), supports aggregation over concrete domains, and our CP-
based approach is the first and only implementation for any logic with such features.

Our empirical evaluation on ontologies in the expressive DL ALC shows that
our approach is competitive against existing ontology reasoners, outperforming some
state-of-the-art tableau-based reasoners, sometimes by several orders of magnitude.
We also demonstrate that, with some simple model-level optimisation, our approach
is feasible for supporting concrete domain and aggregation reasoning in ELU(¬)(f,Σ)
with sub-second reasoning time.

In the future, we plan to further investigate ways to improve reasoning efficiency.
For example, we will identify more symmetries in encoded models to add more
symmetry breaking constraints. We will also investigate deeper integration with
existing CP solvers to support efficient reasoning for more expressive description logics.
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