
Constraint Problem Specification

as Compression

S. D. Prestwich1, S. A. Tarim2, and R. Rossi3
1Insight Centre for Data Analytics, University College Cork, Ireland
2Department of Management, Cankaya University, Ankara, Turkey

3University of Edinburgh Business School, Edinburgh, UK

Abstract. A theme of Algorithmic Information Theory is that, for any
scientific or mathematical theory, “understanding is compression”. That
is, the more compactly we can express a theory, the more comprehensi-
ble it becomes. We apply this philosophy to the problem of constraint
problem specification. Instead of defining a new specification language,
we use Constraint Logic Programming as a meta-language to describe
itself compactly via compression techniques. We show that this approach
can produce short, clear descriptions of standard constraint problems. In
particular, it allows a simple and natural description of compound vari-
ables and channeling constraints. Moreover, for problems whose speci-
fication requires the solution of an auxiliary problem, a single specifi-
cation can unify the two problems. We call our specification language
Kolmogorov.

1 Introduction

Constraint modeling is more of an art than a science, and considerable research
has been devoted to making it easier for Constraint Programming (CP) users.
A popular approach is to describe the problem in an abstract specification lan-
guage, then transform the description into a concrete constraint model. Ideally
a specification should be a concise but exact description of the problem, prefer-
ably in a formal language that is usually mathematical in nature. Perhaps the
best-known CP specification languages are OPL [13], Essence [11] and Zinc
[15], while AMPL [10] is used to specify mathematical programs.

We propose a new approach to constraint problem specification, inspired by
an idea from the field of Algorithmic Information Theory (AIT). G. Chaitin, one
of its founders, has argued that a scientific or mathematical theory is a computer

program for calculating the facts, and the smaller the program, the better . This
view has been summarised by the phrase understanding is compression [4] and
the view we discuss here is that specification is compression. Like scientific the-
ories, constraint problem specifications should be concise and easily understood.
In our approach specifications are compressed constraint models that can be de-
rived by applying simple data compression-like techniques to constraint models.
In principle any pattern in a model can be exploited to produce a more compact
description, as in algorithmic data compression.



We choose Constraint Logic Programming (CLP) as both the problem mod-
eling language and the specification language, with a few special predicates pro-
vided for its specification role. That is, we use CLP as a meta-language to
describe CLP itself at a higher level of abstraction. We call our specification
language Kolmogorov because of its connection with AIT and compression. A
Kolmogorov specification can be automatically transformed (uncompressed)
into an executable CLP model.

In Section 2 we introduce our approach using a trivial example. In Section 3
we demonstrate its usefulness on several examples from the CP literature. Section
4 discusses other approaches to problem specification. Section 5 concludes the
paper. A version of this paper will be published in [18].

2 Specifications as compressed CLP models

Kolmogorov uses CLP in two ways: as a (high-level) specification language
and as a (low-level) constraint modeling language (low-level is a relative term
here because CLP is already quite a high-level language). In its high-level role it
represents low-level concepts (variables, constraints and constants) as structured
Prolog ground terms, and a few useful predicates are provided to aid description.
We shall illustrate this by example. The specific CLP language we use is Eclipse
[1] and we assume familiarity with basic CLP concepts.

2.1 Illustrative example: N-queens

Consider the well-known N-queens problem, which uses a generalised chess board
with a grid of N ×N squares. The problem is to place N queens on it in such a
way that no queen attacks any other. A queen attacks another if it is on the same
row, column or diagonal (in which case both attack each other). A classic paper
[17] presented 9 constraint satisfaction problem (CSP) models called Q1–Q9,
and we use the popular Q1.

For each row i of the board define a variable vi with domain {1, . . . , N}. An
assignment vi = j means that a queen is placed at row i column j. Because a
variable can only take one value, this model already implies that no row contains
two queens. We need constraints to ensure that no column contains 2 queens:
vi 6= vj for 1 ≤ i < j ≤ N . Similarly for diagonals: vi−vj 6= i− j for 1 ≤ i < j 6=
N . An Eclipse model for this problem with N = 3 is shown in Figure 1. This
is probably the simplest and clearest model, though it is not general-purpose
because the number of queens is fixed to 3.

Now consider a naive Kolmogorov specification of this model, shown in
Figure 2. It describes the problem variables (kvar), and the subgoals describing
variable declarations and constraints (kgoal), with the CLP variables V1, V2
and V3 replaced by structured ground terms v(1), v(2) and v(3). We do not
model the head q3(V1,V2,V3) of the CLP clause but this could be done. The
[] argument is used for passing parameters such as the size of the chess board,
which is not used in this first specification.



q3(V1,V2,V3) :-

[V1,V2,V3]::1..3,

V1#\=V2, V1#\=V3, V2#\=V3,

V2-V1#\=1, V3-V1#\=2, V3-V2#\=1,

V1-V2#\=1, V1-V3#\=2, V2-V3#\=1.

Fig. 1. A CLP model for 3-queens

To obtain the CLP variable declarations and constraints of the specification
we enumerate all solutions of the goal

?- kgoal(C,[]).

by backtracking:

C = [v(1),v(2),v(3)]::1..3

C = (v(1)#\=v(2))

...

C = (v(2)-v(3)#\=1)

These are collected into a list, then variable terms such as v(2) are replaced by
unique CLP variable names V1, V2 and V3. These names are generated automat-
ically by (i) enumerating the variables via the goal

?- kvar(V,[]).

giving solutions

V = v(1)

V = v(2)

V = v(3)

(ii) using a hash table to associate a unique integer (the hash table entry) with
each ground term (the hash table key), and (iii) replacing each variable ground
term by the letter V followed by its hash table entry. The result is exactly the
model in Figure 1.

The above example illustrates the Kolmogorov framework, but so far we
have not demonstrated any advantage because the specification is longer and less
clear than the CLP model itself. We now compress the description by looking
for patterns: for example we may observe that each variable v(I) occurs in a
#\= constraint with each variable v(J) where I<J, and that each variable occurs
in another #\= constraint with each variable v(J) where I\=J. We can exploit
this simple pattern to produce a more compact specification as shown in Figure
3. The kvar and kgoal solutions of this specification are the same as those of
the previous one, and again exactly the same CLP model will be generated.

The predicate csp posts the constraints in its argument then nondeterministi-
cally solves the corresponding CSP by assigning values to its variables. Although
any CLP code can be used in the body of a kvar or kgoal clause, often it will
be a CSP so this predicate makes it easier to write Kolmogorov specifications.



kvar(v(1),[]).

kvar(v(2),[]).

kvar(v(3),[]).

kgoal([v(1),v(2),v(3)]::1..3,[]).

kgoal(v(1)#\=v(2),[]).

kgoal(v(1)#\=v(3),[]).

kgoal(v(2)#\=v(3),[]).

kgoal(v(2)-v(1)#\=1,[]). kgoal(v(1)-v(2)#\=1,[]).

kgoal(v(3)-v(1)#\=2,[]). kgoal(v(1)-v(3)#\=2,[]).

kgoal(v(3)-v(2)#\=1,[]). kgoal(v(2)-v(3)#\=1,[]).

Fig. 2. Naive Kolmogorov specification for 3-queens

kvar(v(I),[]) :-

csp(I::1..3),

kgoal(L::1..3,[]) :-

findall(V,kvar(v(I),[]),L).

kgoal(v(I)#\=v(J),[]) :-

kvar(v(I),3), kvar(v(J),3), I<J.

kgoal(v(J)-v(I)#\=D,[]) :-

kvar(v(I),3), kvar(v(J),3), I\=J, D is J=I.

Fig. 3. Compressed Kolmogorov specification for 3-queens



We shall show that specifying variables and constraints as CSP solutions makes
Kolmogorov very expressive.

The compact 3-queens specification can be generalised to the N-queens prob-
lem as shown in Figure 4, in which the board size N is specified in the second
argument of kvar and kgoal. This specification is close to a mathematical de-
scription of the problem.

kvar(v(I),[N]) :-

csp(I::1..N).

kgoal(L::1..N,[N]) :-

findall(V,kvar(v(I),[N]),L).

kgoal(v(I)#\=v(J),[N]) :-

kvar(v(I),N), kvar(v(J),N), I<J.

kgoal(v(J)-v(I)#\=D,[N]) :-

kvar(v(I),N), kvar(v(J),N), I\=J, D is J-I.

Fig. 4. Compressed Kolmogorov specification for N-queens

This trivial example illustrates our approach: we detect and exploit patterns
in the model in order to obtain a more compact representation, which is also
more amenable to generalisation. However, in practice we need not start with
a model and transform it, as in this example: familiarity with Kolmogorov

means that we can write a compact specification directly.
In this paper we shall gloss over some details that in practice also require

handling: an objective function (if any), the search strategy, library declarations,
and which variables form the part of the solution we are interested in (usually
declared in a goal, such as q3(V1,V2,V3) in the model of Section 1). We shall
focus on specifying constraint satisfaction problems.

2.2 Specification as compression

Exploiting patterns to obtain a more compact representation, as we did with
the N-queens CLP model, is precisely what is done in data compression (though
typically using different techniques). This is why we consider Kolmogorov

specifications to be compressed constraint models . In principle any pattern in
a constraint model can be exploited by a Kolmogorov specification, because
CLP is a Turing complete language so it can express any form of algorithmic
compression. The compactness of the specification is limited only by the Kol-
mogorov complexity of the specification (hence the name Kolmogorov).

However, this principle should not be taken too far. We could in principle
compress a constraint model to the shortest possible string S, then write a
Kolmogorov specification

kgoal(G,[]) :- uncompress(S,G).



This is not useful for our purposes because a random-looking string such as S is
not comprehensible by humans, and in practice only compressions that improve
clarity should be used.

3 Examples

We now present Kolmogorov specifications for several problems from the CP
literature, and point out its advantages.

3.1 Four standard problems

An Essence paper [11] presented specifications for four problems (the knapsack
problem, Golomb rulers, SONET and the social golfer) and we start by modeling
the same problems. As we have not modeled objective functions we consider
them as decision problems, but it would be simple to extend Kolmogorov to
optimisation problems.

The Knapsack problem is specified in Figure 5. It has parameters B (knapsack
capacity) and K (minimum total value), a list of item sizes SL, a list of item
values VL, and a desired set cardinality N. The Golomb ruler problem is specified
in Figure 6 using a CP model with auxiliary variables from [22], with N ticks
and a ruler of length M. The SONET problem is specified in Figure 7. This is
a decision version of the unlimited traffic capacity model in [20] with an upper
bound S on the objective. The social golfer problem is specified in Figure 8 based
on the model of [8, 12].

kvar(u(I),[B,K,N,SL,VL]) :-

csp(I::1..N).

kgoal((UL::0..1,sum(S1)#=<B,sum(S2)#>=K),[B,K,N,SL,VL]) :-

findall(u(I),kvar(u(I),[B,K,N,SL,VL]),UL),

findall(U*S,csp((element(Q,UL,U),element(Q,SL,S))),S1),

findall(U*V,csp((element(Q,UL,U),element(Q,VL,V))),S2).

Fig. 5. Kolmogorov specification of the knapsack problem.

These specifications are of comparable size to Essence and other specifi-
cations. For example specifications for the social golfer problem are shown in
five other languages: Essence, Zinc, ESRA, OPL and NP-Spec. There is no
generally-agreed way of comparing the relative sizes of specifications in such dif-
ferent languages, but to our eyes the Kolmogorov specification is no larger
than any of the others, and smaller than some.



kvar(t(I),[N,M]) :-

csp(I::1..N).

kvar(d(I,J),[N,M]) :-

kvar(t(I),[N,M]), kvar(t(J),[N,M]), I<J.

kgoal(t(I)::0..M,[N,M]) :-

kvar(t(I),[N,M]).

kgoal((d(I,J)::1..M,d(I,J)#=t(J)-t(I)),[N,M]) :-

kvar(d(I,J),[N,M]).

kgoal(ordered(TL),[N,M]) :-

findall(t(I),kvar(t(I),[N,M]),TL).

kgoal(alldifferent(DL),[N,M]) :-

findall(d(I,J),kvar(d(I,J),[N,M]),DL).

Fig. 6. Kolmogorov specification of the Golomb ruler problem.

kvar(n(I),[N,M,S,R]) :-

csp(I::1..N).

kvar(r(K),[N,M,S,R]) :-

csp(K::1..M).

kvar(x(I,K),[N,M,S,R]) :-

csp((I::1..N,K::1..M)).

kgoal(intset(n(I),1,M),[N,M,S,R]) :-

kvar(n(I),[N,M,S,R]).

kgoal((intset(r(K),1,N),#(r(K),Q),Q#=<R),[N,M,S,R]) :-

kvar(r(K),[N,M,S,R]).

kgoal(x(I,J)::0..1,[N,M,S,R]) :-

kvar(x(I,J),[N,M,S,R]).

kgoal(sum(XL)#=<S,[N,M,S,R]) :-

findall(x(I,J),kvar(x(I,J),[N,M,S,R]),XL).

kgoal((#(n(I) /\ n(J),Q),Q#>=1),[N,M,S,R]) :-

kvar(n(I),[N,M,S,R]), kvar(n(J),[N,M,S,R]), I<J.

kgoal((x(I,K)#=((I in r(K)) /\ (K in n(I)))),[N,M,S,R]) :-

kvar(x(I,K),[N,M,S,R]).

Fig. 7. Kolmogorov specification of the SONET problem.



kvar(g(I,J),[W,G,S]) :-

csp((I::1..W,J::1..G)).

kgoal(intset(g(I,J),1,P),[W,G,S]) :-

kvar(g(I,J),[W,G,S]), csp((P#=G*S,#(g(I,J),S))).

kgoal(g(I,J) disjoint g(I,J1),[W,G,S]) :-

kvar(g(I,J),[W,G,S]), kvar(g(I,J1),[W,G,S]), J<J1.

kgoal((#(g(I,J) /\ g(I1,J1),N), N#=<1),[W,G,S]) :-

kvar(g(I,J),[W,G,S]), kvar(g(I,J1),[W,G,S]), I<I1.

Fig. 8. Kolmogorov specification of the social golfer problem.

3.2 Improved Social Golfer

The specification for the Social Golfer problem in Figure 8 is based on a standard
model, but an interesting improved model was reported by Puget [19]. We shall
use this model to illustrate two powerful features of Kolmogorov: symbolic

constants to simplify the writing of constraints, and incorporating an auxiliary

problem (used to generate data for the main problem) into a specification.
Figure 9 shows a Kolmogorov specification for a version of Puget’s model,

using finite domain variables instead of set variables. For each week and group
we define an integer variable whose domain represents all possible groups. (Puget
notes that for the well-known case of 8 groups of 4 players over 10 weeks there are
35960 such groups, which is large but tractable.1) We post binary constraints
to ensure that the groups in a week do not intersect, and that groups from
different weeks have at most one player in their intersection. We omit symmetry
breaking constraints for brevity, though our ordering of the PL variables breaks
intra-group symmetry in the same way as Puget’s use of set variables.

This example introduces a new Kolmogorov feature: a predicate kconst

for representing constants (such as integers) symbolically by ground terms. Here
kconst declares that any term of the form s(PL), where PL is a list of length S,
represents an integer; it does not matter what value this integer is, as long as
each distinct term maps consistently to a unique integer (these are automatically
generated during Kolmogorov compilation). So symbolic constants such as
s([0,1,2]), s([0,1,3]), s([0,1,4]),. . . represent groups, and are replaced by
integers 1, 2, 3,. . . during compilation, which form domains for the g-variables.
The advantage of symbolic constants is that we can write some constraints in
a very natural way: for example, to check whether integers (say 79 and 335)
assigned to two g-variables represent intersecting sets, we simply check whether
their symbolic constants (say s([3,4,7]) and s([2,4,8])) contain elements in
common (in this case they both contain 4) as in Figure 9.

Another advantage of our approach is that the groups need not be generated
in a separate phase, then added to the specification (or constraint model). Their

1 Actually, our model is impracticably large in practice because we enumerate subsets.
However, it is still a useful modelling exercise.



kvar(g(I,J),[W,G,S]) :-

csp((I::1..W,J::1..G)).

kconst(s(PL),[W,G,S]) :-

length(PL,S), csp((PL::1..G*S,ordered(PL))).

kgoal(V::Dom,[W,G,S]) :-

findall(C,kconst(C,[W,G,S]),Dom),

kvar(V,[W,G,S]).

kgoal((g(I,J1)#=s(PL1))+(g(I,J2)#=s(PL2))#<2,[W,G,S]) :-

csp((I::1..W,[J1,J2]::1..G,J1#<J2)),

kconst(s(PL1),[W,G,S]), kconst(s(PL2),[W,G,S]),

intersection(PL1,PL2,[_|_]).

kgoal((g(I1,J1)#=s(PL1))+(g(I2,J2)#=s(PL2))#<2,[W,G,S]) :-

csp(([I1,I2]::1..W,[J1,J2]::1..G)),

kconst(s(PL1),[W,G,S]), kconst(s(PL2),[W,G,S]),

intersection(PL1,PL2,[_,_|_]).

Fig. 9. Kolmogorov specification for the improved social golfer

generation is part of the Kolmogorov specification, and occurs automatically
when the CSP in the kconst clause is solved during compilation. This feature
can also be useful for industrial problems, as we show in Section 3.3.

3.3 Cutting stock problem

To further illustrate the advantage of representing the elements of a CSP (vari-
ables, constants and constraints) as CSP solutions, we use a well-known in-
dustrial problem: the cutting stock problem. This example is taken from H.
Kjellerstrand’s MiniZinc page.2

A company cuts boards of size 17 into pieces of sizes 3, 5 and 9, and they
must cut enough pieces to satisfy demands 25, 20 and 15 respectively. There are
six allowed cutting patterns for a board:

size 3 5 4 2 2 1 0
size 5 0 1 2 0 1 3
size 9 0 0 0 1 1 0

wasteage 2 0 1 2 0 2

where wasteage is the material left after cutting pieces from the board. We must
decide how many boards to cut, and how many times to apply each cutting
pattern. We turn this into a decision problem by fixing the number of boards
to B. A Kolmogorov specification is shown in Figure 10, and to generate a
constraint model we call

?- kgoal(C,[B,PL,DL]).

2 http://www.hakank.org/minizinc



with B set to some integer and

PL = [[5,0,0],[4,1,0],[2,2,0],[2,0,1],[1,1,1],[0,3,0]]

DL = [25,20,15]

The cutting patterns are provided here as a list parameter, and in the MiniZinc
specification as a matrix. Their generation is an auxiliary problem that must be
solved before the cutting stock problem instance can be fully stated.

kvar(c(P),[B,PL,DL]) :-

csp(P::1..6).

kgoal(c(P)::0..B,[B,PL,DL]) :-

kvar(c(P),[B,PL,DL]).

kgoal(sum(L)#>=D,[B,PL,DL]) :-

csp((Q::1..3,element(Q,DL,D))),

findall(X*c(I),(element(I,PL,P),element(Q,P,X)),L).

Fig. 10. Kolmogorov specification for cutting stock

In real-world instances the set of allowed cutting patterns might be (for
example) a consequence of the design of the cutting machinery, or the need
to avoid excess wasteage. If we can model this machinery it might be possible
to derive an auxiliary CSP whose solutions are the allowed cutting patterns.
Suppose we wish to allow any cutting pattern [U,V,W] with wasteage less than
3. We can then make cutting pattern generation part of the specification by
expressing it as a CSP as in Figure 11.

kvar(c(P),[B,DL]) :-

csp(P::1..6).

kgoal(c(P)::0..B,[B,DL]) :-

kvar(c(P),[B,DL]).

kgoal(sum(L)#>=D,[B,DL]) :-

csp((Q::1..3,element(Q,DL,D))),

findall([U,V,W],csp(pattern(U,V,W)),PL),

findall(X*c(I),(element(I,PL,P),element(Q,P,X)),L).

pattern(U,V,W) :-

U::0..5, V::0..3, W::0..1, Used#=U*3+V*5+W*9,

Waste#=17-Used, Used#=<17, Waste#<3.

Fig. 11. Kolmogorov specification for cutting stock with implicit patterns



3.4 Covering arrays

Kolmogorov’s symbolic constants are helpful when we have models involving
compound or dual variables [21] and channeling constraints [5]. As an example
we use a published CP model for covering arrays [14]. This is not the naive

model which is the simplest to describe (see [11] for an Essence specification)
but does not scale up to large instances, but the hybrid model designed for
scalability, which was used to extend known results for covering arrays.

The problem is as follows. A covering array CA(t, k, g) of size b is an b × k

array consisting of b vectors of length k with entries from Zg = {0, 1, . . . , g − 1}
(g is the size of the alphabet) such that every one of the gt possible vectors
of size t occurs at least once in every possible selection of t elements from the
vectors. The objective is to find the minimum b for which a CA(t, k, g) of size k

exists, and fixing b gives a decision problem.
The obvious way of modeling the problem uses a set of decision variables

xi,j ∈ {0, . . . , g − 1} to represent the covering array. In [14] this is referred to
as the naive model because it does not scale well to large instances, because the
coverage constraints are hard to express efficiently. An alternate model instead
uses a

(

k
t

)

× b matrix A of integers in Zgt , which is represented by another set of
Boolean variables: for each column c, row j and value y define a variable acjy.
The idea of the a-variables is that a choice of t columns from the k columns
in the covering array is represented by a single integer c ∈ Z(kt)

, and that the

values in these t columns are combined to give a single integer y ∈ Zgt . The
a-variables model this alternative representation of the covering array. We call
the a-variables compound variables and they occur in many constraint models.
However, the alternate model is also inefficient because it requires a large number
of intersection constraints to ensure consistency between a-variables that share
x-variables.

The hybrid model combines both representations: the coverage constraints
are expressed on the a-variables, and channeling constraints between the a-
and x-variables make the intersection constraints redundant. Figure 12 shows
a Kolmogorov specification for this model (apart from symmetry breaking
constraints which we omit for brevity). Instead of indexing the a-variables by an
integer c ∈ Z(kt)

to describe the choice of columns, we index them by a list of

the columns: aj,i1,...,it . The a-domains are integers, and a simple way of choosing
these integers is to post intentional non-binary channeling constraints

aj,i1,...,it =

t−1
∑

i=0

2ixi,j

as mentioned in [14]. However, an extensional method has the advantage of
stronger filtering: post binary constraints to forbid nogoods

〈aj,i1,...,it = c, xiq ,j = c′〉

where c is any value corresponding to the assignment xiq ,j = c′. A difficulty here
is that it is not trivial to write a mathematical relationship between c and c′



(and this was not explicitly done in [14]). But the difficulty vanishes if we use
kconst to define symbolic constants as in Section 3.2. We represent the elements
of each a-domain by structured terms: aj,i1,...,it = c(c1, . . . , ct) written as c(CL)
where CL is a list of integers. Now the binary channeling constraint nogoods are
simple to state:

〈aj,i1,...,it = c(c1, . . . , ct), xiq ,j = cq〉

for q = 1, . . . , t. Representing domain integers by symbolic constants allows us
to specify channeling constraints in a more natural way, without the need for
devising complicated relationships between domains.

kvar(x(I,J),[T,K,G,B]) :-

csp((I::1..K,J::1..B)).

kvar(a(J,IL),[T,K,G,B]) :-

length(IL,T), csp((J::1..B,IL::1..K,ordered(IL))).

kconst(c(CL),[T,K,G,B]) :-

length(CL,T), csp(CL::0..G-1).

kgoal(x(I,J)::0..G-1,[T,K,G,B]) :-

kvar(x(I,J),[T,K,G,B]).

kgoal(a(J,IL)::Dom,[T,K,G,B]) :-

kvar(a(J,IL),[T,K,G,B]),

findall(c(CL),kconst(c(CL),[T,K,G,B]),Dom).

kgoal((a(J,IL)#=c(CL))+(x(I,J)#=A)#<2,[T,K,G,B]) :-

kvar(a(J,IL),[T,K,G,B]), kconst(c(CL),[T,K,G,B]),

csp((element(Q,IL,I),element(Q,CL,A))).

kgoal(gcc(BL,YL),[T,K,G,B]) :-

findall(gcc(1,B,c(CL)),kconst(c(CL),[T,K,G,B]),BL),

findall(a(J,IL),kvar(a(J,IL),[T,K,G,B]),YL).

Fig. 12. Kolmogorov specification for hybrid CA model

An interesting generalisation of covering arrays is Quilting arrays [6] in which
we do not need to cover all patterns, but only those with a specified pattern such
as using only two values, or with all different values. We can easily extend the
Kolmogorov specification of Figure 12 to handle Quilting arrays by adding a
constraint such as alldifferent(CL) to the kconst definition. This prevents
any compound variable a from taking a value that corresponds to an invalid
pattern of x assignments.

4 Related work

CLP languages themselves were initially promoted as high-level specification lan-
guages, until the need for greater abstraction became apparent. Kolmogorov



is perhaps closest in spirit to NP-Spec [3], which uses Datalog (a simplified
form of Prolog without structured terms) plus some second-order predicates to
specify problems. Answer Set Programming [2] and Business Rules [7] have also
been used as specification languages for CP. A different approach is taken by
Essence [11], Zinc [15], OPL [13], ESRA [9], F and Localizer [16], which use
mathematical language to obtain highly abstract specifications. AMPL [10] and
other languages play a similar role for mathematical programming.

An important feature of some languages (Essence, ESRA, F and Local-

izer) is quantification over decision variables, rather than merely over ranges of
integers [11]. Kolmogorov does not contain explicit quantifiers, but because it
represents variables (also constraints and symbolic constants) as generic Prolog
terms it has similar expressive power: it can enumerate all variables whose rep-
resentation matches a given term. This occurs when kvar is called from kgoal

in several of our examples.

5 Conclusion

Kolmogorov is a new approach to writing specifications for constraint prob-
lems. Instead of creating a new mathematical language we use CLP as a meta-
language to describe CLP models at a higher level of abstraction. Thus a Kol-

mogorov specification is a CLP description of a CLP model, which exploits
patterns in the model to make the description clear and compact. A particularly
powerful feature is that the variables, constants and constraints of a CSP can all
be specified as solutions to auxiliary CSPs. An auxiliary CSP might itself require
specification, so a useful future direction is to make Kolmogorov recursive.

It might be argued that Kolmogorov is not a specification language at
all, as our specifications are written in an existing programming language. But
we have shown that for a variety of problems its specifications are of compa-
rable size to those of other specification languages. We argue that the purpose
of a specification is to describe a problem clearly, precisely and succinctly, and
that Kolmogorov fulfils these criteria. Our argument assumes familiarity with
CLP, which is of course not true of all CP researchers. However, our approach re-
quires the modeler to know only one language, whereas some approaches require
knowledge of both a CP language and a very different specification language.

Our use of CLP to specify constraint problems could be criticised on the
grounds that CLP contains non-declarative features (such as negation-as-failure,
findall and the cut) whereas specification languages are typically declarative.
We chose to use a full programming language for reasons of convenience and
concision, but we could have used only declarative features. Horn clause logic
is a subset of CLP that is also Turing complete, and restricting Kolmogorov

to this language would have the advantage of being completely declarative and
with a very simple syntax.



Acknowledgment

This publication has emanated from research supported in part by a research
grant from Science Foundation Ireland (SFI) under Grant Number SFI/12/RC/2289.

References

1. K. R. Apt, M. Wallace. Constraint Logic Programming Using Eclipse. Cambridge
University Press, 2007.

2. M. Balduccini. Representing Constraint Satisfaction Problems in Answer Set Pro-
gramming. ICLP’09 Workshop on Answer Set Programming and Other Computing

Paradigms, 2009.

3. M. Cadoli, G. Ianni, L. Palopoli, A. Schaerf, D. Vasile. NP-Spec: an Executable
Specification Language for Solving All Problems in NP. Computer Languages 26(2–
4):165–195, 2000.

4. G. Chaitin. Epistemology as Information Theory: From Leibniz to Ω. Collapse

1:27–51, 2006.

5. B. M. W. Cheng, K. M. F. Choi, J. H. M. Lee, J. C. K. Wu. Increasing Con-
straint Propagation by Redundant Modeling: an Experience Report. Constraints
4(2):167–192, 1999.

6. C. J. Colbourn, J. Zhou. Improving Two Recursive Constructions for Covering
Arrays. Journal of Statistical Theory and Practice 6:30–47, 2012.

7. F. Fages, J. Martin. From Rules to Constraint Programs with the Rules2CP Mod-
elling Language. Recent Advances in Constraints: 13th Annual ERCIM Interna-

tional Workshop on Constraint Solving and Constraint Logic Programming, Lecture

Notes in Computer Science Vol. 5655, 2008, pp 66–83.

8. T. Fahle, S. Shamberger, M. Sellmann. Symmetry Breaking. Proceedings of the 7th

International Conference on Principles and Practice of Constraint Programming,

Lecture Notes in Computer Science vol. 2239, 2001, pp. 93–107.

9. P. Flener, J. Pearson, M. Ågren. Introducing ESRA, a Relational Language for
Modelling Combinatorial Problems. Proceedings of the 13th International Sympo-

sium on Logic Based Program Synthesis and Transformation, 2003, pp. 214–232.

10. R. Fourer, D. Gay, B. W. Kernighan. AMPL: a Modeling Language for Mathemat-
ical Programming. The Scientific Press, San Francisco, CA, 1993.

11. A. M. Frisch, M. Grum, C. Jefferson, B. Mart́ınez Hernández, I. Miguel. Essence: a
Constraint Language for Specifying Combinatorial Problems. Constraints 13:268–
306, 2008.

12. W. Harvey. Symmetry Breaking and the Social Golfer Problem. CP’01 Workshop

on Symmetries, 2001.

13. P. van Hentenryck. The OPL Optimization Programming Language. MIT Press,
Cambridge, MA, 1999.

14. B. Hnich, S. D. Prestwich, E. Selensky, B. M. Smith. Constraint Models for the
Covering Test Problem. Constraints 11(3):199–219, 2006.

15. K. Marriott, N. Nethercote, R. Rafeh, P.J. Stuckey, M. Garcia de la Banda, M.
Wallace. The Design of the Zinc Modelling Language. Constraints 13(3):229–267,
2008.

16. L. Michel, P. van Hentenryck. Localizer. Constraints 5:43–84, Kluwer Academic
Publishers, 2000.



17. B. A. Nadel. Representation Selection for Constraint Satisfaction: a Case Study
Using N-Queens. IEEE Expert: Intelligent Systems and Their Applications 5(3):16–
23, IEEE Computer Society 1990.

18. S. D. Prestwich, S. A. Tarim, R. Rossi. Constraint Problem Specification as Com-
pression. 2nd Global Conference on Artificial Intelligence, 2016 (to appear).

19. J.-F. Puget. Symmetry Breaking Revisited Constraints 10(1):23–46, 2005.
20. B. M. Smith. Symmetry and Search in a Network Design Problem. Proceedings

of the 2nd International Conference on Integration of AI and OR Techniques in

Constraint Programming for Combinatorial Optimization Problems, Lecture Notes

in Computer Science vol. 3524, 2005, pp 336–350.
21. B. M. Smith. Modelling for Constraint Programming. ACP Summer School on

Modelling with Constraints: Theory and Practice. St Andrews, Scotland, UK, 2008.
22. B. M. Smith, K. Stergiou, T. Walsh. Modelling the Golomb Ruler Problem. Tech-

nical report 1999.12, University of Leeds, UK, 1999.


