
Building efficient soft and cost MDD constraints

Guillaume Perez and Jean-Charles Régin

Université Nice-Sophia Antipolis, I3S UMR 6070, CNRS, France
guillaume.perez06@gmail.com, jcregin@gmail.com

Abstract. Recent developments of efficient propagators, operations and creation
methods for MDDs allow us to directly build efficient MDD-based models, with-
out the need of intermediate data structures. In this paper, we make another step in
this direction by defining efficient methods to handle cost and soft versions of the
MDD constraint. First, we improve the existing algorithms, then we propose to
perform several graph operations that reformulate both constraints as a classical
MDD constraint. This directly offers cost and soft versions for table constraints
and any constraints which can be viewed as an MDD (regular, slide, knapsack,
grammar...).

1 Introduction

Multi-valued decision diagrams (MDDs) have a significant place in today’s solver, they
are implemented in almost all of them, and are more and more used to build models [13,
1, 9, 10, 3, 7]. They can be constructed by several ways, from table, automata, dynamic
programming, etc. Another reason of their use is the existence of several operators
allowing to build MDDs by combining two or more MDDs.

In this paper, we consider cost-MDD, the cost version of an MDD, which is an MDD
whose edges have an additional information: the cost of the edge. In a cost-MDD, each
path from the top layer to the bottom layer has a cost, and a cost-MDD constraint aims at
bounding this cost. Cost-MDDs are useful to model optimisation problems [2, 3]. Sev-
eral algorithms already exist in Constraint Programming for the cost-MDD constraint
[6, 8], they are an adaptation of existing algorithms for MDD constraints. We propose
an adaptation of MDD4R [12] to process to cost-MDD constraint, because MDD4R is
one of the best MDD propagators, for which we have observed speed up factor of 100
for some industrial applications. We will show that such speed up are also observed to
cost-MDD4R compared to existing methods.

We also consider the soft version of an MDD constraint, which will allow to violate
some edges, with respect to a certain amount of violation. Cost and soft version of
propagators add flexibility for the modeler.

The main motivation of this work is the generation of text and music from corpus
avoiding plagiarism [11, 13]. This problem has been focused on when a lot of solutions
exist. However when the corpus is too small, or too complex (too many different words
compared to the total number of words), classical algorithms do not find any solution. In
this case, we would like to provide solutions with respect to an amount of violation. An
important remark is that, if the corpus size grows, then the problem becomes satisfiable.

2 Guillaume Perez and Jean-Charles Régin

If it grows again, then it becomes useless to apply a plagiarism constraint because it
becomes exponentially improbable to build a sequence containing plagiarism.

The paper is organized as follows. The next section recalls some basics about MDDs,
cost-MDD, constraints for both of them and soft constraint. Section 3 presents the re-
lated work and cost-MDD4R, our cost-MDD propagator which is an adaptation of the
MDD4R propagator. Section 4 presents three methods to process the soft MDD con-
straint, notably a transformation of the soft-MDD constraint into a classical MDD con-
straint. In the Experimental section, we show how we can modify the model of the text
generation problem in order to deal with violation, and show our experimental results.
We also show by using several random instances that our methods are very efficient for
both of these problems. Finally, we conclude.

2 Preliminaries

2.1 Definitions

MDD. Multi-valued decision diagram (MDD) is a data-structure for representing dis-
crete functions. It is a multiple-valued extension of BDDs [4]. An MDD, as used in CP
[5, 12, 1, 9, 10, 3, 7], is a rooted directed acyclic graph (DAG) used to represent some
multi-valued function f : {0...d − 1}r → {true, false}, based on a given integer d.
Given the r input variables, the DAG representation is designed to contain r layers of
nodes, such that each variable is represented at a specific layer of the graph. Each node
on a given layer has at most d outgoing arcs to nodes in the next layer of the graph.
Each arc is labeled by its corresponding integer. The final layer is represented by the
true terminal node (the false terminal node is typically omitted). There is an equiva-
lence between f(v1, ..., vr) = true and the existence of a path from the root node to
the true terminal node whose arcs are labeled v1, ..., vr. Nodes without any outgoing
arc or without any incoming arc are removed.

Fig. 1. An MDD representing the tuple set {(a,a),(a,b),(c,a),(c,b),(c,c)}

MDD constraint. In an MDD constraint, the MDD models the set of tuples satisfy-
ing the constraint, such that every path from the root to the true terminal node corre-
sponds to an allowed tuple. Each variable of the MDD corresponds to a variable of

Building efficient soft and cost MDD constraints 3

the constraint. An arc associated with an MDD variable corresponds to a value of the
corresponding variable of the constraint. An example of MDD is given in Figure 1. It
represents the tuples (a,a), (a,b), (c,a), (c,b) and (c,c). For each tuple, there is a path
from the root node (node 0) to the terminal node (node tt) whose are labeled by the
tuple values.

For convenience, we will denote by d the maximum number of values in the domain
of a variable; and an arc from u to v labeled by a will be denoted by (u, v, a). We denote
by path(M) the set of paths from root to tt of the MDD M .

Definition 1 Let M = (N,E) be an MDD, X be a set of variable. Let p = {e1, e2, ..., en}.

valid(p) ⇐⇒ ∀ei = (ui, vi, ai) ∈ p, ai ∈ dom(xi) ∧ p ∈ path(M). (1)

Definition 2 Let X be a set of variables and M be an MDD.
The constraint MDDConstraint(X, M) ensures that:

∃p, valid(p). (2)

Definition 3 Let X be a set of variables and M be an MDD.
The constraint MDDConstraint(X, M) is Arc-Consistent (AC) iff:

∀xi ∈ X,∀a ∈ dom(xi),∃p = {e1, e2, ..., en}, ei = (ui, vi, a) ∧ valid(p). (3)

Cost-MDD. A cost-MDD is an MDD whose edges have an additional information: the
cost c of the edge. That is, edges are 4-uplet e = (u, v, a, c), where u is the emanating
node, v the terminating node, a the label and c the cost.

Definition 4 Let M = (N,E) be a cost-MDD, let p = {e1, e2, ..., en} be a path of M
with ei = (ui, vi, ai, ci). C is a path cost function, defined by

C(p) =

n∑
i=1

ci (4)

Definition 5 Let M = (N,E) be a cost-MDD. A shortest path of M with respect to C,
is a path noted pmin(M) such that:

6 ∃ p′ ∈ path(M), p′ 6= pmin(M) ∧ C(p′) < C(pmin(M)). (5)

Definition 6 Let M = (N,E) be a cost-MDD. A shortest path of an edge e ∈ E is a
path noted pmin(e) such that:

e ∈ pmin(e), 6 ∃ p′ ∈ path(M), e ∈ p′ ∧ p′ 6= pmin(e) ∧ C(p′) < C(pmin(e)). (6)

Definition 7 Let M = (N,E) be a cost-MDD. Let C(M) (resp. C(M)) be the minimal
(resp. maximal) shortest path cost in M:

C(M) = mine∈E(C(pmin(e))) (7)

C(M) = maxe∈E(C(pmin(e))) (8)

4 Guillaume Perez and Jean-Charles Régin

Cost-MDD constraint.

Definition 8 Let X be a set of variables, M = (N, E) be a cost-MDD and H be an integer
value. The constraint cost-MDDConstraint(X, M, H) ensures that:

∃p, valid(p) ∧ C(p) ≤ H. (9)

Definition 9 Let X be a set of variables, M = (N, E) be a cost-MDD and H be an integer
value. The constraint cost-MDDConstraint(X, M, H) is AC iff:

∀xi ∈ X,∀a ∈ dom(xi),∃p = {e1, e2, ..., en}, ei = (ui, vi, a, ci)∧valid(p)∧C(p) ≤ H.
(10)

Several algorithms exist for propagating the cost-MDD constraint [6, 8], they will be
introduced in the related work section.

Soft constraint. Soft-constraints are constraints that can be violated, with respect to
a violation variable which measures the violation. The violation measurement can be
different depending on the constraint. For example, for a table, we can consider the
minimal Hamming distance to a tuple from the table. In general the (weighted) sum of
violation variables is minimized, because a good solution that minimizes the number of
violation.

Soft MDD constraint A soft MDD constraint is an MDD constraint which allows the
violation of valid(p). We assume that the amount of violation is the number of value of
the path p not in the domain of the variable.

Definition 10 Let e be an edge. Let costd() be a cost function.

costd(e) =

{
0 if label(e) ∈ dom(var(e))
1 otherwise

Definition 11 Let X be a set of variables, M be an MDD and H be an integer value.
The constraint softMDDConstraint(X, M, H) ensures that:

∃p = {e1, e2, ..., en},
n∑
i=1

costd(ei) ≤ H. (11)

Definition 12 Let X be a set of variables, M be an MDD and H be an integer value.
The constraint softMDDConstraint(X, M, H) is AC iff:

∀xi ∈ X,∀a ∈ dom(xi),∃p = {e1, e2, ..., en},
n∑
i=1

costd(ei) ≤ H. (12)

Building efficient soft and cost MDD constraints 5

3 Cost-MDD constraint.

3.1 Related work

Existing propagators [6, 8] for the cost-MDD constraint are based on the idea of pro-
cessing and maintaining up[u], the shortest path cost between the root node and every
node u, and then dn[u], the shortest path cost between each node u and the tt node.
An edge e = (u, v, a, c) is deleted when up[u] + dn[v] + c > H .

The authors of these algorithms use a modified version of their own MDD propa-
gator to handle this new deletion and propagation in the cost-MDD. Basically, when a
variable of X is modified, the edges labeled by the deleted values have to be removed,
and, if a node lost all its incoming or outgoing edges, it has to be removed. When a
node is removed, all its remaining edges have to be removed. If a node u has its value
up[u] or dn[u] modified, then the new value has to be propagate.

3.2 Cost-MDD4R Propagator

In this section, we propose a modified version of the MDD4R algorithm [12] to handle a
cost-MDD constraint. This is motivated by the fact that MDD4R is a very efficient MDD
propagator and is already implemented in several CP solvers. First, we will recall some
basics about MDD4R, then we will introduce cost-MDD4R, the cost-MDD propagator.

MDD4 is a propagator for the MDDConstraint(X,M) with X a set of variables and
M = {N,E} an MDD. MDD4 maintains the whole MDD during the search. It main-
tains the three following invariants:
∀u ∈ N,ω+(u) contains all the valid edges outgoing from u.
∀u ∈ N,ω−(u) contains all the valid edges incoming in u.
∀x ∈ X,∀a ∈ dom(x), S(x, a) contains all the valid edges e s.t. e = (u, v, a).
When a modification occurs in the domain of a variable, MDD4 deletes all edges in

the ω lists of the deleted values, then it deletes the nodes and edges which do not belong
to a valid path. To do so, MDD4 performs two BFS, layer by layer, one from the layer
of the modified variable until the top, and the other one from the modified variable to
the bottom.

MDD4R is an improved version of MDD4 based on the idea of the reset. A reset [12]
is an operation which consists in clearing and rebuilding a data structure when it needs
less operation than updating it. For example, if for a layer we have to remove 90% of
the edges, we should consider rebuilding the layer from the 10% remaining edges. So
by using this idea and just by maintaining the number of edges of each layer, we can
know exactly if we should remove the inconsistent edges, or rebuild the layer using the
remaining edges. This idea is the main advantage of MDD4R and leads to orders of
magnitude in performances gain.

Introduction of costs. MDD4R does not deal with any cost. To do so, cost-MDD4R
adds and maintains for each node u, the value up[u] and dn[u] as defined in the
related work section.

6 Guillaume Perez and Jean-Charles Régin

Definition 13 Let e = (u, v, a, c) be an edge, the Minimal Path Cost denoted by
MPC(e) is MPC(e) = c+ up[u]+ dn[v] = C(pmin(e)).

Cost-MDD4R. While the MDD propagator only has to handle one callback for the
variables, a cost-MDD propagator needs to handle cost modifications. These two points
are the subject of the next two paragraphs.

Variable propagation. When a modification occurs in the domain of a variable, cost-
MDD4R can perform the same work as MDD4R, but it has to maintain for each node u
the values of up[u] and dn[u]. To do so, it can mark the modified nodes and, between
the work made layer by layer, update the cost of the modified nodes, and delete the edges
that just become invalid. Cost-MDD4R may have to continue its cost propagation, layer
by layer, even if no more edges have to be deleted by MDD4R.

If a reset is performed (i.e. less valid edges than invalid edges), then the values up
and dn are recalculated while putting back the edges, there is no need of a recalculation
between the layer, only the cost propagation part is required for the nodes whose value
has been modified.

To avoid unnecessary work, we can only mark nodes whose value is equal to the
value bring by the deleted edge. For example, if we remove the edge e = (u, v, a, c),
we mark u only if dn[u] = c+ dn[v] and we mark v only if up[v] = c+ up[u].

Modification of the cost value. When the upper-bound of the cost H is reduced from
k + i to k, cost-MDD4R has to remove all the edges e such that MPC(e) > k

Property 1 ∀e, ∀e′ ∈ pmin(e),MPC(e) ≥MPC(e′)

Corollary 1 Let M = (N,E) be a cost-MDD, ∀e,MPC(e) = k =⇒ ∀e′ such that
MPC(e′) < k, MPCM (e′) = MPCM\{e}(e

′)

Corollary 2 Let C be an AC cost-MDD constraint with a cost-variable upper-bound
of k + i. If the cost upper-bound is reduced to k, then removing all edges such that
MPCM (e) > k is sufficient for C to be AC.

Proof: The edges with MPC(e) > k are not consistent by definition. And so they have
to be deleted. From Corollary 1, the other edges remain consistent, because their costs
do not change.

Using these properties, when the value H is reduced from k + i to k, cost-MDD4R
performs a BFS, and for each layer, it will simply remove the edges such that MPC >
k. This can be efficiently done by maintaining the edge sorted by their MPC.

Here again, we can use the reset idea. When there is less edges whose MPC ≤ k
than edges with MPC > k, then cost-MDD4R will chose to clear the data structures
and put back the edges with MPC ≤ k. This is an important part of the algorithm
because the bound propagation can be costly. This idea avoids deleting almost all the
MDD when only few edges are still valid.

Building efficient soft and cost MDD constraints 7

4 soft-MDD constraint

MDD constraint propagators [5, 12] fail when no solution exists. A soft-MDD con-
straint is used to handle the distance of the satisfaction. In this paper, for a soft-MDD
constraint, we consider the distance of the satisfaction as the minimum distance with a
path of the MDD.

For example, consider the top left MDD from the Figure 2. If all the edges from a
path are valid, then the constraint is not violated. But if values a and b are deleted from
the domain of the first variable (i.e. the variable of the first layer) then the propagation
of this deletion will remove all the nodes and edges of the MDD. This shows that we
need to introduce new propagators in order to deal with the amount of violation.

0

1

a

2

b

3

a c b

4

ac

5

b c a

0

1

a *

2

b *

3

a c * b *

4

a c *

5

b c * a *

Fig. 2. Soft MDD creation and uses

We will now introduce three methods to handle soft-MDD constraints. The first one
is a simple propagator, which does not modify the MDD and use some properties on
shortest path to valid the values. The second one is a transformation of the MDD in
order to allow a cost-MDD constraint to handle the soft-MDD constraint. The last one
is another transformation of the MDD, in order to allow a classical MDD propagator to
handle a soft-MDD constraint.

4.1 First propagator

The first propagator we introduce for the soft-MDD constraint does not modify the
MDD and is really easy to implement. The costd cost function is the one from definition
10. This propagator is based on the following properties:

Property 2 The lower Bound of the soft constraint is the shortest path from the root
node to the tt node using the costd cost function.

Property 3 If it exists a path of cost k, then it exists a path of cost ∈ [k-1, k+1] for any
value of any variable.

8 Guillaume Perez and Jean-Charles Régin

Proof: The k+1 value is given by the replacement of one of the values of the path of
cost 0 by any other value. The cost of any other value is either 0 or 1. So the cost will
be k or k+1. The same idea for k-1 applies.

Corollary 3 A path with cost strictly lower than H supports all the values of all the
variables.

A first remark is that a classical cost-MDD cannot handle this constraint because
the cost of an edge depends on the domain of the variables.

This propagator searches for the shortest path of the MDD according to the costd
cost function. If a path as a cost strictly lower than the maximum cost, then all the val-
ues are supported. Otherwise, we delete all edges e with MPC(e)) > H . The resulting
MDD can now be handled by any MDD propagator. Using two BFS, we can determine
the shortest path cost of all edges and removing all impossible paths.

This method can be expensive. This is why we propose a second method for the soft
MDD constraint. This method uses two steps, the first step converts the soft-MDD con-
straint into a cost-MDD constraint. The second step converts the cost-MDD constraint
into a simple MDD constraint.

4.2 soft-MDD as a cost-MDD

The conversion of a soft-MDD constraint into a cost-MDD constraint uses the method
defined in [15] initially created for the regular constraint.
The idea is to add, for each two nodes which have at least one edge between them, an
additional edge labeled by *, with a cost of 1. The cost of all the other edges is set to
0. An edge labeled by * is an edge which supports any value of the variable and we
call them *-edges. Algorithm 1 describes the method. We can now apply a cost-MDD
constraint, or convert this cost-MDD constraint into a simple MDD constraint using the
next step.

As we can see in the top right MDD in figure 2, the *-edges (dotted) are created
only between connected nodes. Nodes 2 and 3 are connected by an edge labeled by b,
so we can create the *-edge, but 1 and 4 are not connected, so we cannot create the
*-edge between them.
For instance, consider the variables x1, x2 and x3 having the set {a,b,c} as domain.
We can create a cost-MDD constraint taking the top-right MDD of figure 2 and the
variables x1, x2 and x3 in this order. If the values a and b are deleted from the domain
of the variable x1, the resulting MDD is the MDD in the figure 3. We can see that only
2 edges have been deleted, and contrary to basic MDD constraints, the nodes are not
deleted, thanks to the *-edges. It is easy to see that the shortest path cost in this MDD
is 1 because all the path contain at least one *-edge.

4.3 soft-MDD as an MDD via intersection

The recent development of efficient operations between MDDs [13, 14] allows us to
perform several operations between MDDs. In general these operations aim at combin-
ing MDDs according to the label of their edges. In this section, we use these operations

Building efficient soft and cost MDD constraints 9

1

3

a c *

5

b c *

2

b *

4

a c *

a *

0

* *

Fig. 3. Soft MDD propagation

Algorithm 1: *-edges creation in an MDD.
*-EDGES CREATION(mdd)

for each n ∈mdd.V do
for each n′ in neighbors+(n) do

CREATE EDGE(n, n′, ∗, 1)

in another way. Instead of applying operators on the label of the edges, we apply them
on their cost.

Let MDDΣ{0,1} (Figure 4) be the MDD representing the sum of n variable with
the set {0, 1} as domain. It is easy to prove that the maximum of this sum is n. The last
variable represents the possible value of this sum. As seen in the previous section, a soft-
MDD constraint can be expressed as a cost-MDD constraint, the cost of the edges are
either 0 or 1. If we perform the intersection between our cost-MDD with MDDΣ{0,1},
we will obtain an MDD with the cost var at its last layer. Now any MDD propagator
can handle this MDD.

For example, if we take the right MDD of figure 2, and we intersect this MDD with
the one of figure 4, then we will obtain the MDD of the figure 5. In the resulting MDD,
the node (1 S=0) represents the copy of the node 1 from the first MDD having an
incoming cost of 0. We can observe that the outgoing edges of nodes (1 S=X) arc still
directed to a node labeled by (3 S=X).

For convenience, we denote by mdd.layer(i) the set of nodes at the layer i, by
|mdd.layer(i)| the number of nodes at the layer i and by |M | the number of nodes of
the MDD M .

About the size of this new MDD, the maximum number of time a node in a soft-
MDD can be duplicated is bounded by its depth + 1. The proof is that in an in-
tersection of two MDDs, the maximum number of nodes at a layer i is bounded by
|mdd.layer(i)| ∗ |MDDΣ{0,1}.layer(i)|. Knowing that |MDDΣ{0,1}.layer(i)| = i,

10 Guillaume Perez and Jean-Charles Régin

S = 0

S = 0

0

S = 1

1

S = 0

0

S = 1

1 0

S = 2

1

S = 0

0

S = 1

1 0

S = 2

1 0

S = 3

1

0 1 2 3

Fig. 4. MDDΣ{0,1} of size 3

0 S=0

1 S=0

a

1 S=1

*

2 S=0

b

2 S=1

*

3 S=0

ac

3 S=1

* a c

3 S=2

*b *

4 S=0

a c

4 S=1

* b *a c

4 S=2

*

5 S=0

b b

5 S=1

* bb

5 S=2

* bb

5 S=3

*a * a * a *

0 1 2 3

Fig. 5. MDD resulting from the intersection of the right MDD of the figure 2 and the one from
figure 4

Building efficient soft and cost MDD constraints 11

we can say that the total number of nodes is bounded by n ∗ |mdd|. The size of our
new MDD is bounded by n ∗ |M |. Here M is the transformation previously defined of
a soft-MDD into a cost-MDD.

This method could also be applied to any cost-MDD constraint. However, in general
the sum is not bounded by a small number. When it is, applying this transformation is
a good idea because MDD propagators are faster than cost-MDD propagators. At last,
this intersection method gives a way to have an AC propagator on the cost-variable of
the cost-MDD constraint, contrary to the other propagators.

5 Experiments

In this section we compare cost-MDD4R with the algorithm presented in [8] (ev-mdd)
and with the intersection method from section 4.3 (inter).

Sequence generation We focus on a recent work on sequence generation based on
corpus [11, 13] named maxOrder. The goal is to generate sequences of words, where
for example, each subsequence of size two belongs to the corpus (Markovian transition)
and no subsequence of size 4 belongs to the corpus. Here 4 denotes the maximum
plagiarism size.

To handle this problem, the authors perform graph operations to build a structure
representing the solutions of this problem. When no solution exists, they obtain an
empty graph.

If one wants to obtain solutions with respect to some violations, one should handle
the problem differently. We propose to split the problem, in order to be able to soften ei-
ther the Markovian transition constraint, or the plagiarism constraint. So we will create
two distinct MDDs.

First, we extract the Markov transition matrix from the corpus, then we build the
MDD representing the Markov transition constraint named MDDM .

Second we build MDDp, the MDD representing all the sequences of size 4 not
belonging to the corpus. To do so, we build the MDD of all the sequences of size 4
which belong to the corpus, then we apply the negation operator [13]. An important
remark is that the negation of an MDD is linear in its size.

Here the soft MDD constraint can be used in two distinct ways. The first one is for
MDDM , the Markov MDD, if a soft MDD constraint is applied for it, then we allow
the generation algorithm to create new word transition (transition not belonging to the
corpus).

The second one is for MDDp, the plagiarism MDD, this allows the generation
algorithm to create sequences containing some plagiarism. The goal of the solver is
then to limit this plagiarism.

We have tested both of these soft ways, both gives pertinent results. For the exper-
imentation, we used "The fables of Jean de La Fontaine" because they
contain several sentences, not too many words and often produce funny results.

An important remark is that, if the corpus size grows, then the maxOrder con-
straint becomes satisfiable. If it grows again, then it becomes useless to apply a maxOrder

12 Guillaume Perez and Jean-Charles Régin

constraint because it becomes exponentially improbable to build a sequence containing
plagiarism. That’s why we focus on corpus like fables and short texts.

Table 1 gives the results. (Note that the model also contains an alldifferent con-
straint. Markov means that we apply the soft constraint on the Markovian transition,
Plagiarism is for the plagiarism part). The creation time is close for both MDDs,
and insignificant compared to the search time. This table shows that both methods are
useful, and that our algorithms clearly outperform the existing methods.

Table 1. Times needed to build the sequences with minimum of violation (T-0 1800s).

Algo Markov Plagiarism
size 18 20 22 18 20 22
inter 5,5 104,8 111,7 4,7 8,1 9,3
cost-MDD4R 5,3 86,5 94,9 23,7 44,6 67,9
ev-mdd 11,1 361,9 355,5 26,2 58,5 78,0

Random instances In this part, we test our algorithms with several random instances,
in order to detect the location of the best performance of each algorithm. In our ex-
periments, we associate each edge with a random cost between 0 and 10. We have a
cost-MDD constraint of arity 18, several other constraints like allDifferent etc... The
first experiment in Table 2 shows that the intersection method can be very efficient in
practice.However, when the MDD grows up to reach our memory limit (around 1.7GB),
then cost-MDD4R become faster than the intersection method

Table 2. search for the best solution (construction time is included, arity 18, domain size 18).

#tuples cost-MDD4R ev-mdd inter
50 35,89 59,23 2,55
150 19,15 33,98 1,97
500 19,61 35,38 2,77
1k 19,97 37,37 4,15
2k 32,04 66,22 8,23
5k 32,27 71,43 14,22
10k 44,26 83,58 19,12
25k 101,57 189,30 49,84

6 Conclusion

This paper makes another step in the direction of building advanced constraint program-
ming models using decision diagrams. We have introduced methods that can be used

Building efficient soft and cost MDD constraints 13

by several constraint programming solvers which have already implemented an MDD
package. We have also shown how to model a text generation problem using this soft
MDD. Finally, we have shown that our methods are efficient in practice.

7 Acknowledgments

We would like to thank A. Papadopoulos and the members of Sony CSL for the help
during the construction of the benchmarks.

References

1. Henrik Reif Andersen, Tarik Hadzic, John N. Hooker, and Peter Tiedemann. A constraint
store based on multivalued decision diagrams. In CP, pages 118–132, 2007.

2. David Bergman and Andre A Cire. Decomposition based on decision diagrams. In Interna-
tional Conference on AI and OR Techniques in Constriant Programming for Combinatorial
Optimization Problems, pages 45–54. Springer International Publishing, 2016.

3. David Bergman, Willem Jan van Hoeve, and John N. Hooker. Manipulating mdd relaxations
for combinatorial optimization. In CPAIOR, pages 20–35, 2011.

4. Randal E Bryant. Graph-based algorithms for boolean function manipulation. Computers,
IEEE Transactions on, 100(8):677–691, 1986.

5. K. Cheng and R. Yap. An mdd-based generalized arc consistency algorithm for positive and
negative table constraints and some global constraints. Constraints, 15, 2010.

6. Sophie Demassey, Gilles Pesant, and Louis-Martin Rousseau. A cost-regular based hybrid
column generation approach. Constraints, 11(4):315–333, 2006.

7. G. Gange, P. Stuckey, and Radoslaw Szymanek. Mdd propagators with explanation. Con-
straints, 16:407–429, 2011.

8. Graeme Gange, Peter J Stuckey, and Pascal Van Hentenryck. Explaining propagators for
edge-valued decision diagrams. In Principles and Practice of Constraint Programming,
pages 340–355. Springer, 2013.

9. Tarik Hadzic, John N. Hooker, Barry O’Sullivan, and Peter Tiedemann. Approximate com-
pilation of constraints into multivalued decision diagrams. In CP, pages 448–462, 2008.

10. Samid Hoda, Willem Jan van Hoeve, and John N. Hooker. A systematic approach to mdd-
based constraint programming. In CP, pages 266–280, 2010.

11. A. Papadopoulos, P. Roy, and F. Pachet. Avoiding plagiarism in markov sequence generation.
In Proceeding of the Twenty-Eight AAAI Conference on Artificial Intelligence, pages 2731–
2737, 2014.

12. Guillaume Perez and Jean-Charles Régin. Improving GAC-4 for table and MDD constraints.
In Principles and Practice of Constraint Programming - 20th International Conference, CP
2014, Lyon, France, September 8-12, 2014. Proceedings, pages 606–621, 2014.

13. Guillaume Perez and Jean-Charles Régin. Efficient operations on mdds for building con-
straint programming models. International Joint Conference on Artificial Intelligence,
IJCAI-15, Argentina, 2015.

14. Guillaume Perez and Jean-Charles Régin. Constructions and in-place operations for mdds
based constraints. In Integration of AI and OR Techniques in Constraint Programming, pages
279–293. Springer International Publishing, 2016.

15. Willem-Jan van Hoeve. Operations Research Techniques in Constraint Programming. PhD
thesis, CWI / ILLC, University of Amsterdam, 2005.

