
Debugging Unsatisfiable Constraint Models

Kevin Leo and Guido Tack

Data 61/CSIRO and Faculty of IT, Monash University, Australia
{kevin.leo,guido.tack}@monash.edu

Abstract. The first constraint model that you write for a new problem
is often unsatisfiable, and constraint modelling tools offer little support
for debugging. Existing algorithms for computing Minimal Unsatisfiable
Subsets (MUSes) can help explain to a user which sets of constraints
are causing unsatisfiability. However, these algorithms are usually not
aimed at high-level, structured constraint models, and tend to not scale
well for them. Furthermore, when used naively, they enumerate sets of
solver-level variables and constraints, which may have been introduced
by modelling language compilers and are therefore often far removed
from the user model.
This paper presents an approach for using high-level model structure to,
at the same time, speed up computation of MUSes for constraint models,
and present more meaningful results to users. We have implemented
the approach for the MiniZinc modelling language, based on the recent
MARCO MUS enumeration algorithm.

1 Introduction

Modelling languages for constraint programming such as ESSENCE [4] and
MiniZinc [15] allow decision problems to be modelled in terms of high-level
constraints. Models are combined with instance data and are then compiled into
input programs for solving tools (solvers). The goal of these languages is to al-
low users to solve constraint problems without requiring deep knowledge of the
target solving tool.

Unfortunately, real-world problems typically exhibit a level of complexity
that makes it difficult to create a correct model. The first attempt at modelling
a problem often results in an incorrect model. There are multiple ways in which
a model may be incorrect. In this paper we focus on the case of over-constrained
models where the conjunction of all constraints are unsatisfiable for any instance
of the problem.

When faced with unsatisfiability, the user has few tools to help with de-
bugging. The main strategy usually consists in activating and deactivating con-
straints in an attempt to locate the cause of the problem, but this approach
is tedious and often impractical due to the fact that the fault may involve a
non-trivial combination of groups of constraints and instance data.

Several techniques for debugging unsatisfiable constraint programs exist,
some are designed for debugging specific kinds of constraint programs [5,14,7],

while others focus on diagnosis of unsatisfiability during search [9,18,16]. We are
concerned with approaches that are constraint-system agnostic [8,2,12]. Many of
these approaches focus on the search for Minimal Unsatisfiable Subsets (MUSes):
a set of constraints that together is unsatisfiable, but removing any one of the
constraints makes it satisfiable. MUSes can therefore help explain the sources of
unsatisfiability in a constraint program.

Existing tools for finding MUSes focus on program level constraints, i.e., the
constraints at the level of the solver. When combining MUS detection with high-
level modelling, this has two main drawbacks. Firstly, the solver-level program
typically contains hundreds or thousands of constraints, even for relatively simple
high-level models. MUS detection algorithms do not scale well to these problem
sizes. Secondly, the user may find it difficult to interpret the resulting sets of
constraints, because they have lost all connection to the original model and may
involve variables that were introduced by the compilation.

The main contribution of this paper is an approach that uses high-level
model structure to guide the MUS detection algorithm. We show that
using the structure available in a high-level MiniZinc model can speed up the
search for MUSes. We also demonstrate how these can be presented to the user
in a meaningful and useful way, in terms of the high-level model instead of the
solver-level program. Finally, we show how MUSes found across a set of instances
can be expressed in terms of the high-level (parametric) model, allowing us to
generalise the detected conflicts and distinguish between genuine modelling bugs
and unsatisfiability that arises from faulty instance data.

Structure. The next section presents some of the background techniques. sec-
tion 3 introduces a MUS detection algorithm that can take advantage of high-
level model structure. section 4 discusses implementation aspects and presents
some experiments that show promising speed-ups. section 5 shows how the ad-
ditional information about model structure can be used to present more mean-
ingful diagnoses to the user, and section 6 discusses how the presented approach
can help generalise the results found across several instances to the model-level.
Finally, section 7 discusses related approaches and section 8 concludes the paper.

2 Background

A constraint program is a formal representation of an instance of a decision prob-
lem. Constraint programs consist of a set of variables representing the decisions
to be made, a set of domains representing the possible assignments to these
variables, and a set of constraints, in the form of predicates which describe the
relationship between variables. Optionally a constraint program can also have an
objective function which is to be minimised or maximised. A solution to a con-
straint program is a set of assignments to the variables such that all constraints
are satisfied and the value of the objective function is optimal (in the case of an
optimisation problem). If no assignment exists that satisfies all constraints, the
program is said to be unsatisfiable.

2.1 Constraint Models

MiniZinc is a high-level language for describing parametric models of problems.
These models can be combined with instance data and compiled into concrete
constraint programs that target specific solvers by the MiniZinc compiler.

In this paper we will use the Latin Square problem as a running example.
A Latin Square is an n by n matrix of integers where each row and column
contain permutations of the numbers 1 to n. Listing 1.1 presents a MiniZinc
model for this problem. Line 1 declares that the model has an integer parameter
‘n’, the dimension of the matrix. Line 2 creates the n×n matrix named X which
is a matrix of integer variables which must take values in the interval [1, n].
Line 4 introduces the first set of constraints. It states that the variables in each
row of the matrix must take distinct values. Following this on line 5 the second
constraint states that the variables in each column must also take distinct values.

1 int: n;
2 array[1..n, 1..n] of var 1..n: X;
3
4 constraint forall (r in 1..n) (alldifferent(row(X, r)));
5 constraint forall (c in 1..n) (alldifferent(col(X, c)));

Listing 1.1: MiniZinc Model for the Latin Squares Problem

Listing 1.2 shows simplified output from the MiniZinc compiler when compil-
ing this model with n = 3. During compilation, MiniZinc performs a bottom-up
translation, replacing each argument to a predicate or function call with an
auxiliary variable bound to the result of the call. MiniZinc provides a set of
standard decompositions that encode constraints in terms of simpler predicates.
Solver-specific MiniZinc libraries can define custom decompositions, or declare
a predicate as a built-in, in which case it is simply added to the FlatZinc. For il-
lustration purposes, we chose a compilation that decomposes the alldifferent
constraint, although most MiniZinc solvers provide it as a built-in.

The following is an example trace through the compiler that introduces one of
the int_ne predicates to the FlatZinc. Starting with line 4 from Listing 1.1 the
compiler starts to evaluate the forall predicate. The argument to the forall

constraint is a list comprehension. To evaluate the comprehension the compiler
must loop through values for r in the set [1, n] and evaluate the expression
alldifferent(row(X, r)). With r set to 1 it evaluates row(X, 1) which re-
turns an array containing the variables corresponding to the first row of the ma-
trix X. Next the compiler evaluates alldifferent(A) where A is the returned
array. The standard library contains a definition for alldifferent with an ar-
ray of integer variables, rewriting it to the more specific all_different_int(A)
predicate. The compiler must now evaluate this predicate call, resulting in a de-
composition into a set of not-equal constraints (int_ne). The compiler then
assigns 2 to r and compilation proceeds. Once compilation has finished we have
18 constraints in the FlatZinc model.

array[1..9] of var 1..n: X;
int_ne(X[1], X[2]); int_ne(X[1], X[3]); int_ne(X[1], X[4]);
int_ne(X[1], X[7]); int_ne(X[2], X[3]); int_ne(X[2], X[5]);
int_ne(X[2], X[8]); int_ne(X[3], X[6]); int_ne(X[3], X[9]);
int_ne(X[4], X[5]); int_ne(X[4], X[6]); int_ne(X[4], X[7]);
int_ne(X[5], X[6]); int_ne(X[5], X[8]); int_ne(X[6], X[9]);
int_ne(X[7], X[8]); int_ne(X[7], X[9]); int_ne(X[8], X[9]);
solve satisfy;

Listing 1.2: FlatZinc Program for the Latin Squares Problem

2.2 Program Level Diagnosis

Current approaches for fault diagnosis in constraint programs work at the level of
individual constraints in a compiled program. These approaches typically aim to
enumerate Minimal Unsatisfiable Subsets (MUSes). Having a selection of MUSes
gives the user a better chance of discovering the root cause of unsatisfiability
although in some cases a single MUS may be sufficient.

Enumerating the MUSes of a program can be achieved by exploring the
power-set or all combinations of constraints, performing a satisfiability check
for each and collecting all unsatisfiable subsets, discarding all strict supersets.
The satisfiability check is typically delegated to an external solver, so that the
MUS detection algorithm itself is agnostic of the concrete type of problem that
is being diagnosed.

Most MUS algorithms avoid enumerating the entire power-set in an attempt
to minimise the number of satisfiability checks required. For example, they will
avoid the exploration of any superset of an already discovered MUS. A detailed
survey of MUS enumeration approaches can be found in [13].

These existing approaches work with the full set of program level constraints
(such as all 18 constraints in Listing 1.2). Good techniques for pruning the search
space can reduce the number of satisfiability checks considerably. However, de-
pending on the time taken by each satisfiability check, this pruning may still not
be enough to make these approaches useful for large constraint programs.

When used with constraint programs generated by a compiler like MiniZinc,
the generated MUSes are likely to include constraints and variables introduced
during compilation. These can be difficult to map back to their source in the
model. Presenting these MUSes to a user who is unfamiliar with the workings of
the compiler may not be conducive to fixing modelling mistakes. Consider List-
ing 1.2, the final program has a large set of int_ne constraints. Finding where
each constraint came from in the original model is possible but not simple.

2.3 Variable Paths

The concept of variable paths was first introduced in [11]. Variable paths describe
the path the compiler took through the model to the point where a concrete
variable is introduced to the program. Our implementation was for the MiniZinc
modelling language but paths can be implemented for any modelling language

that is compiled in a similar way. Paths contain information on the location of
each syntactic construct as well as the bindings of all loop variables involved
in producing a variable. The compiler can use paths to match variables across
multiple compilations of an instance, enabling it to perform some whole-program
optimisation with an aim to producing a simpler, more efficient program. For
example, consider the following simple model:

1 int: n;
2 array[1..n] of var 1..n: x;
3 predicate f(var int: x, int: i) = x > i;
4 constraint forall (i in 1..n)
5 (f(x[i],i) -> f(y[n-i+1],i+1));

MiniZinc will introduce Boolean variables for the expressions f(x[i],i) and
f(y[n-i+1],i+1) for each value of i. Each introduced variable is annotated
with a path as shown for n=3 (in a simplified form) here:

var bool: B_0 :: "4:11:fa:i=1;5: 4:f;3:34:gt;";
var bool: B_1 :: "4:11:fa:i=1;5:17:f;3:34:gt;";
var bool: B_2 :: "4:11:fa:i=2;5: 4:f;3:34:gt;";
var bool: B_3 :: "4:11:fa:i=2;5:17:f;3:34:gt;";
var bool: B_4 :: "4:11:fa:i=3;5: 4:f;3:34:gt;";
var bool: B_5 :: "4:11:fa:i=3;5:17:f;3:34:gt;";

For example, B_3 was introduced by a forall in line 4, in the iteration for i=2,
through the call to f in column 17 (the second call), and finally the greater-than
operator in line 3. The paths allow the compiler to identify the variables even if
the rest of the program changes (e.g. when compiling with a different library).

For the purposes of this paper, we will extend the concept of variable paths to
also apply to constraints, in order to be able to identify the origins and high-level
structure of program-level constraints.

3 Exploiting Model Structure for MUS Detection

This section introduces our approach to augment an existing MUS detection
algorithm so that it can take advantage of high-level model structure. The ap-
proach is outlined in Algorithm 1.

Our approach combines two existing ideas with an extension of the MiniZinc
variable path concept in order to speed up MUS detection and provide more
meaningful diagnoses to the user. The first idea is to perform diagnosis based
on groups of constrains as explored in [9] where users define names for groups of
lower-level constraints to encode a hierarchy and provide more useful feedback.
We refer to these groupings as abstract constraints. We extend this concept and
show how existing model-level structure can be used to group constraints into
abstract constraints automatically, based on constraint paths which explicitly
encode the hierarchy of constraints. In Algorithm 1 this grouping is managed
by a checker which is aware of the variables and constraints (V,C) and their
depth in the hierarchy. The second idea has been presented recently in the form

of the MARCO algorithm for MUS detection [13]. It relies on a SAT solver to
keep track of which sets of constraints should not be explored. This will be ex-
plained in section 4. Our prototype implementation uses MARCO, however any
similar MUS enumeration algorithm (such as [1]) could be used. In Algorithm 1
marco.finished() returns true if MARCO has fully enumerated the MUSes at
the current depth and marco.next() returns the next MUS.

Algorithm 1 Procedure for reporting MUSes found at different depths

1: procedure diagnose(V,C,minDepth,maxDepth,maxMUSes)
2: checker ← create checker(V,C)
3: checker.increase depth(C, minDepth)
4: for depth ∈ (minDepth, maxDepth] do
5: MUSes ← ∅
6: while |MUSes| < maxMUSes and not marco(checker).finished() do
7: MUSes ← MUSes ∪ marco(checker).next()

8: if |MUSes| > 0 then
9: report(checker, MUSes)

10: checker.increase depth(
⋃

MUSes, depth)

3.1 Constraint Paths

The example in section 2.3 illustrates how paths identify each syntactic part of
the model that led to the introduction of a certain variable. We now extend the
same mechanism to program-level constraints. Listing 1.3 shows simplified paths
for the first 4 constraints in the compiled Latin Squares program (Listing 1.1).
The path for the first int_ne constraint encodes that it came from a forall

call (abbreviated as fa) on line 4 with an index variable r set to 1. Next, also on
line 4 is an alldifferent call, followed by all_different_int, then another
forall that introduces the int_ne constraint when i is set to 1. For illustrative
purposes we have reduced the amount of detail in the paths presented, actual
MiniZinc paths retain information about what file a call is in, the span of text
the call covers, and the full name of each call.

int_ne(X[1], X[2]) :: "4:fa:r=1;4:ad;:adi;:fa:i=1;:ine;";
int_ne(X[1], X[3]) :: "4:fa:r=1;4:ad;:adi;:fa:i=2;:ine;";
int_ne(X[1], X[4]) :: "5:fa:c=1;5:ad;:adi;:fa:i=1;:ine;";
int_ne(X[1], X[7]) :: "5:fa:c=1;5:ad;:adi;:fa:i=2;:ine;";

Listing 1.3: Simplified MiniZinc paths with depth 1 prefix marked in bold

As can be seen from this simple example, constraint and variable paths en-
code the original model-level hierarchy at the program level. The root of this
hierarchy (or depth 1) for our Latin Squares model would have 2 child groups
or 2 abstract constraints, the top-level constraints from lines 4 and 5. The child
constraints of these (or depth 2) would be the n alldifferent constraints for
each. At a depth of 4 we have the individual concrete int_ne constraints.

A user may also choose to explicitly group related constraints together in a
user defined predicate, mimicking the approach taken in [9]. These predicates
will end up as part of the path making them more meaningful to the user.

3.2 Grouping Constraints by Paths

Having access to model-level structure in the solver-level program allows us to
group constraints together intelligently when searching for MUSes. Instead of re-
lying on the user to define the abstract constraints, or the MUS detection work-
ing on the full set, we can automatically generate abstract constraints based on
the model structure, starting from the top-level constraint items and iteratively
refining them down to individual solver-level constraints.

Take for example Listing 1.3. Grouping constraints by their path prefixes to
a depth of 1, a MUS enumeration algorithm will have to explore the power-set of
only two abstract constraints which is a much smaller search space than that of
the full set of 18 program level constraints. Of course MUSes found at a depth of
1 can only give a user a hint of what might be wrong with their model by drawing
their attention to the correct lines in their model. We may have to use longer
prefixes to find more useful MUSes. The procedure checker.increase depth()
takes a set of abstract constraints that should be expanded and a target depth
to expand them to.

Deepening. After detecting a set of MUSes for a certain grouping depth, we may
want to expand the depth to get more fine-grained information. Of course we
could simply increase the grouping depth for all abstract constraints, which will
split each of them again according to the next part of the paths. However, we
do not need to increase the depth for abstract constraints that did not take part
in any MUS. This allows us to restrict the MUS detection at the next depth
to the abstract constraints that actually appear in MUSes at the current level.
This can speed up enumeration considerably since the abstract constraints that
are not involved in any MUS can be made up of very large sets of constraints.
In Algorithm 1 this is represented by the call to the checker.increase depth
procedure on line 10 with the union of constraints occurring in MUSes.

Automated deepening can allow us to discover MUSes at deep levels much
quicker than trying to find MUSes directly at those depths. For example, if
running a MUS enumeration algorithm on a set of abstract constraints {1, 2} re-
sults in a MUS {1}, we only need to increase the depth for abstract constraint 1
resulting for example in the new set: {1.1, 1.2, 1.3, 2}. If the second abstract con-
straint contains five lower level constraints this approach can lead to a significant
speed-up over computing the MUSes of {1.1, 1.2, 1.3, 2.1, 2.2, 2.3, 2.4, 2.5}.

Incomplete enumeration. A further optimisation that can help find MUSes even
faster is to omit the abstract constraints that did not occur in any MUS at the
current level. This choice does have consequences though, as this removal may
occasionally cut off MUSes that can only be found at deeper levels. Given the
example from before, if the set of real MUSes is {{1.1, 1.2}, {1.2, 2}} but the

enumeration algorithm is treating 1.1 and 1.2 as a single abstract constraint, it
cannot deduce that 2 is really involved in a conflict as removing it from the set
{1, 2} does not make the set satisfiable. Expanding 1 and discarding 2 results in
the algorithm only having to enumerate MUSes for the set {1.1, 1.2} but it has
cut off the MUS {1.2, 2}. When MUSes are used for diagnosis of modelling errors,
this trade-off of speed over completeness can be beneficial. Incomplete enumer-
ation is implemented by adding an argument to the checker.increase depth
procedure which omits abstract constraints not selected for deepening.

4 Implementation

We implemented our approach by extending an existing implementation of an
enumeration algorithm called MARCO, by Liffiton and Malik [12]. This proof
of concept implementation adds a FlatZinc satisfaction checker that is aware of
MiniZinc paths, and a new frontend to MARCO that controls the grouping of
FlatZinc constraints during the enumeration.

To enumerate MUSes the MARCO algorithm maintains a CNF formula
(called a map) that encodes the problem of selecting from the remaining un-
checked subsets of abstract constraints. The algorithm proceeds by finding a
solution to the map, which represents a subset of abstract constraints. If this
set is satisfiable it is expanded by adding constraints that do not cause unsat-
isfiability. The map is then updated to reflect that all subsets of this “grown”
subset are satisfiable and should not be explored except in the presence of an
abstract constraint from outside this subset. If the subset was unsatisfiable, a
“shrink” method is called which removes constraints that do not affect the sub-
set’s unsatisfiability. In this case the map is updated to mark all supersets as
explored. The algorithm continues as long as the map is satisfiable, indicating
that unexplored subsets remain.

Our frontend supports running MARCO on a set of abstract constraints of
a target depth, as well as starting at some depth and deepening after enumera-
tion of MUSes at that depth until we reach a target depth. Removing abstract
constraints that do not occur in a MUS from deeper enumerations (which makes
enumeration incomplete as discussed in the previous section) is also supported.
A further configuration option for improving the performance of the tool is to
limit the number of MUSes to be discovered at each depth. This setting com-
bined with the setting for removing abstract constraints from the map allows
the tool to focus on discovering a specific fault as quickly as possible.

Other additions to the MARCO tool include the ability to add blocking
clauses to the map that encode the connectedness of the abstract constraints.
These clauses state that if a constraint in a set is to be tested, the set must also
include at least one constraint that touches the same variables. This option can
also speed up the enumeration of MUSes but may cut off some MUSes involving
single program level constraints.

Depth 2 1 → 2 3 1 → 3 Max 1 → Max
Model T G C T G C T G C T G C T G C T G C
Costas Array 300.0 56 88 300.0 54 11 300.0 83 0 300.0 0 0 300.0 83 0 300.0 0 0
CVRP 300.0 34 1 0.5 7 1 300.0 66 2 0.7 7 1 300.0 101 3 1.4 14 4
Free Pizza 300.0 81 13 0.7 9 1 300.0 82 12 0.7 1 1 300.0 553 8 1.2 1 1
Mapping 0.4 24 1 0.3 2 1 28.9 69 70 10.9 28 66 300.0 254 70 300.0 0 0
MKnapsack 7.6 31 49 7.2 30 49 7.8 31 49 14.3 30 49 9.5 32 65 58.2 31 65
NMSeq 300.0 40 0 300.0 40 0 300.0 40 0 300.0 0 0 300.0 3240 0 300.0 0 0
Open Stacks 300.0 802 5 300.0 800 5 300.0 841 4 300.0 0 0 300.0 4421 0 300.0 0 0
p1f 113.6 89 77 89.3 77 77 113.9 89 77 170.6 77 77 300.0 947 10 300.0 0 0
Radiation 0.5 5 1 0.5 4 1 12.0 68 12 4.1 25 12 73.1 388 12 20.4 12 12
Spot5 300.0 4998 0 300.0 4406 1 300.0 5227 0 300.0 0 0 300.0 5457 0 300.0 0 0
TDTSP 300.0 46 1 300.0 0 0 300.0 62 1 300.0 0 0 300.0 170 1 300.0 0 0

Table 1: Comparison of enumeration behaviour

4.1 Experiments

To demonstrate the utility of the new approach we present some simple ex-
periments. Currently there are no collections of constraint models that con-
tain bugs that make them unsatisfiable. Collections such as CSPLib [6] or the
MiniZinc benchmarks1 contain only finished, correct models for problems. We
therefore introduced artificial faults to the models similar to how fault injection
was applied in [10]. To do this we selected a set of models from the MiniZinc
Challenge [19] 2015 and introduced mistakes that made the model unsatis-
fiable in a non-trivial way (i.e., so that the compiler does not detect it al-
ready during compilation). Mistakes added include swapping arguments to global
constraints, changing relational operators (<= to <), changing array index off-
sets (X[j] <= X[i+1] to X[j] < X[i]), using the wrong variables in con-
straints (X[n] = X[successor[n]] to X[n] = X[predecessor[n]]), re-
moving negations (x = -v to x = v), changing constants (x != 0 to x != 1)).
The instances used were selected at random.

The first set of experiments, in Table 1, shows how many conflicts can be
discovered by different approaches with a timeout of 5 minutes. The first pair of
experiments involve enumerating MUSes at a depth of 2. The column labelled 2
shows the time (T) taken in seconds, the number of abstract constraints (G) be-
ing explored at the target depth (a 0 in this column indicates that the approach
did not reach the target depth) and finally the number of MUSes (C) discovered
at depth 2. The column labelled 1 → 2 show the results of the deepening ap-
proach, first enumerating the MUSes at depth 1 and then using this to guide the
search at depth 2. Columns showing 0 MUSes discovered by deepening indicate
that no MUSes were found at the required depth but does not necessarily mean
that no MUSes were discovered along the way. These less precise MUSes can be
presented to a user while the tool attempts to find more precise ones. Comparing
the two runs we can see that deepening is sometimes faster, but it occasionally
cannot find as many MUSes as the more exhaustive fixed depth strategy. For
example in the case of the “Free Pizza” model, finding MUSes by starting at a
depth of 2 discovers 13 MUSes before timing out while the deepening approach

1 https://github.com/MiniZinc/minizinc-benchmarks

https://github.com/MiniZinc/minizinc-benchmarks

Depth 2 1 → 2 3 1 → 3 Max 1 → Max
Model T G C T G C T G C T G C T G C T G C
Costas Array 2.5 56 1 3.9 54 1 300.0 83 0 4.7 33 1 300.0 83 0 6.0 33 1
CVRP 0.5 34 1 0.3 7 1 0.9 66 1 0.4 7 1 1.3 101 1 0.8 14 1
Free Pizza 1.6 81 1 0.6 9 1 1.7 82 1 0.7 1 1 9.4 553 1 0.9 1 1
Mapping 0.4 24 1 0.3 2 1 0.6 69 1 0.4 28 1 1.6 254 1 0.6 4 1
MKnapsack 0.5 31 1 0.5 30 1 0.5 31 1 0.5 1 1 0.6 32 1 0.7 1 1
NMSeq 300.0 40 0 300.0 40 0 300.0 40 0 300.0 0 0 300.0 3240 0 300.0 0 0
Open Stacks 53.9 802 1 52.1 800 1 73.7 841 1 55.4 7 1 300.0 4421 0 73.4 14 1
p1f 3.9 89 1 1.9 11 1 4.2 89 1 2.1 1 1 29.6 947 1 2.4 1 1
Radiation 0.5 5 1 0.5 4 1 1.4 68 1 0.9 25 1 6.5 388 1 1.2 1 1
Spot5 300.0 4998 0 258.9 4406 1 300.0 5227 0 264.2 1 1 300.0 5457 0 264.2 1 1
TDTSP 1.2 46 1 0.5 1 1 1.4 62 1 0.4 1 1 3.0 170 1 0.7 1 1

Table 2: First MUS found for different depths

which first finds MUSes at depth 1 and proceeds by only looking for depth 2
MUSes that are deeper expansions of these can only find a single MUS.

The second pair of columns relate to running the approach at a depth of 3
and deepening from depth 1 to 3 (1 → 3). Here we see a few cases where the
new approach is faster but also some cases where just starting at a depth of 3
performs better. This is expected in the cases where increasing the depth does
not significantly change the number of abstract constraints as the enumeration
algorithm has to essentially repeat the enumeration at each depth.

Finally, in the last pair of columns we see results for running the standard
approach on the full set of program level constraints (Max and 1→ Max). Here
we see that the deepening approach can discover MUSes at the level of individual
program level constraints much faster than the full enumeration approach but
we also see that having to enumerate the MUSes at all depths on the way to the
maximum depth can make the algorithm take a longer time.

Time to First MUS. In practice a user will often only need to deal with the first
few MUSes. This is similar to debugging in traditional programming languages,
where often one mistake can produce a cascade of errors. With this in mind the
second experiment explores how long it takes to report the first discovered MUS.

In this experiment the approach is configured to report the first MUS dis-
covered then exit. Deepening runs are configured to only deepen the constraints
involved in the first MUS discovered at each depth. Table 2 shows that this
drastically improves performance.

Here we see a greater difference between the two approaches, with the deep-
ening approach finding MUSes faster in most cases and often finding MUSes at
the required depth in seconds while the traditional approach finds no MUSes
after the full 5 minutes.

5 Displaying Diagnoses

The approach presented in section 4 produces diagnoses as sets of MiniZinc
paths. While paths contain the information that is required to debug a model,
they are not particularly easy to read. The information that a user may need to
extract from a set of paths to help interpret a diagnosis is the set of syntactic
positions that it relates to, and the specific combination of assignments to loop

index variables during compilation that make up the diagnosis. To make things
easier for the user we need to present diagnoses in a more useful form. We have
developed an extension of the MiniZinc IDE to be able to interpret and display
MiniZinc paths directly in the source code editor.

Case Study: Over-constrained Latin Squares

In subsection 2.1 we introduced the Latin Squares problem. This problem has
a set of symmetries which we can break to find valid solutions faster. One such
symmetry is the ordering of values in consecutive rows. To break this symmetry
a lex less or alternatively lex greater constraint can be applied to the
rows. These symmetry breaking constraints can also be applied to consecutive
columns of the matrix. A naive user may try to add as many symmetry breaking
constraints as they can come up with to the model expecting better performance,
but instead they end up with an over-constrained, unsatisfiable model. In Fig-
ure 1 we see the model the Latin Squares problem from section 2 in the MiniZinc
IDE with some conflicting symmetry breaking constraints added.

The user has added lex less constraints which imply an ordering for the
values in consecutive rows. These constraints also imply an ordering for at least
the first column. The user also added lex greater constraints which contradict
the implied order for the first column, making the model unsatisfiable.

Fig. 1: Over-Constrained Latin Squares

Enumerating MUSes for this model
instantiated with n = 3 produces 12
diagnoses. In Figure 2 we show how
a selection of these are presented to
the user in the IDE. Each MUS is
displayed in the output section, with
the number of abstract constraints in-
volved and a list of parameter values
that lead to this diagnosis.

Looking at the highlighting of
the model presented in Figure 2a
we see that the selected diagno-
sis involves some combination of
the row alldifferent constraints,
the row lex_less constraints, and
the column lex_greater constraints.
All of the MUSes for this prob-
lem involve some combination of the
alldifferent constraints and the
lex constraints. Looking at the inter-
section of abstract constraints involved in MUSes it is easy to find that at least
3 lex constraints are involved in every MUS and must be the source of the bug.

If the user cannot immediately deduce what may be causing the issue they
can look at what specific rows and columns are involved by examining the list of
assignments to parameters. From the list in Figure 2a we can see that the bug

(a) MUS with first alldifferent (b) MUS with second alldifferent

(c) MUS with both alldifferent (d) MUS at library level

Fig. 2: Prototype MiniZinc IDE UI showing different diagnoses.

involves the first two iterations of the loop which introduce lex_greater con-
straints for the first three columns (c=1; c=2), the alldifferent constraints
on the first two rows (i=1; i=2) and the lex_less over the first two rows r=1.

If the enumeration algorithm is configured to find MUSes at greater depths,
the diagnoses will involve constraints introduced by decompositions of the model-
level constraints. This can be seen in Figure 2d where a user has clicked on
one such diagnosis. This opens tabs for displaying the MiniZinc standard de-
compositions of the lex_less_int and all_different_int constraints. The
highlighting shows a specific less-than-or-equal constraint that is unsatisfiable.
Tracking down constraints across multiple MiniZinc files is made much easier by
this feature.

6 Generalising to the Model Level

MiniZinc paths were introduced to identify common structure across multiple
compilations of the same instance. With a slight modification they can provide
insights into common structure between different instances, the intersection of
which can be considered to be instance-independent and therefore general to the
parametric model.

In some cases multiple instances of a problem will have MiniZinc paths in
common. For example, the paths for the first few iterations of a forall loop will
often be the same. For example in the Latin Square model presented in section 2
all valid values for the parameter n result in the first forall always being evalu-
ated for r = 1. Different instances will have similar paths for these constraints.
Since the instances are different we cannot really consider the constraints to be
the same and so we cannot perform any automatic reasoning on these. However,
we will now see that grouping the constraints together can provide insights that
a user can act upon.

6.1 Cross-Instance MUSes

The user may have a set of instances of their problem, some of which should be
satisfiable, while others may be unsatisfiable (even assuming a correct model).
If the user does not know which instances are unsatisfiable to begin with, this
can make the process of developing a model quite difficult as the user will have
to deduce whether unsatisfiability is due to a bug in the model or the concrete
instance data. Using the techniques in this paper we can quickly discover the
conflicts arising from a set of instances and compare them, to give the user a
better idea of what may be happening in their model.

When examining a set of MUSes for several instances we often do not care
what specific iteration of a loop is buggy but whether at least one iteration
is buggy in every instance. To make it easier to analyse MUSes from multiple
instances, we can therefore generalise the paths to varying degrees. The easiest
option for generalising the paths is to simply remove the identifying information
that makes a path unique for a single FlatZinc constraint. This way, all iterations
of a loop get grouped together when grouping by path. These generalised paths
can still be grouped differently depending on depth though.

Just as we used the intersection of MUSes in a single instance to find what
bug is common to all MUSes in section 4, we can find intersections of these
generalised paths to group instances by their MUSes, and find MUSes that are
common to all instances, indicating a modelling bug.

Given a model and a set of instances (some of which are unsatisfiable), we
can enumerate MUSes for each instance. The MUSes can then be presented to
the user, ranked by the number of instances that they occur in. Looking at this
ranked list, a user can discern whether a MUS occurs in all or most instances,
which indicates that it may be a bug in the model. Similarly the user can also
see the types of unsatisfiability triggered by different instances, allowing them
to classify their instances into different groups.

6.2 Case Study: RCMSP

To demonstrate how this approach would work in practice we will look at a rel-
atively complex model along with a set of satisfiable and unsatisfiable instances.
The model we selected was the Resource-Constrained Modulo Scheduling Prob-
lem or RCMSP. An RCMSP is a resource-constrained project scheduling problem
where tasks are repeated infinitely. The objective is to find a cyclic schedule that
first minimises the period of the schedule and then minimises the makespan.

Listing 1.4 shows an extract from a model for RCMSP that introduces several
cumulative constraints. A bug has been introduced to the model by modifying
the call to cumulative on line 116, swapping the arguments for start and
duration. Since both start and duration are arrays of integer variables the
MiniZinc compiler does not detect this mistake.

The unsatisfiable instances fall into two groups: two instances that have un-
satisfiable resource capacities and two in which the precedences of some tasks
are cyclical (task a depends on task b which in turn depends on task a). In
addition to these unsatisfiable instances there are three satisfiable instances.

111 constraint forall(r in Res)(
112 let { set of int: ResTasks =
113 {i | i in Tasks where rreq[i, r]>0 /\ d[i]>0},
114 int: sum_rreq = sum([rreq[i, r] | i in ResTasks])
115 } in (if sum_rreq <= rcap[r] then true
116 else cumulative([duration[i] | i in ResTasks],
117 [start[i] | i in ResTasks],
118 [rreq[i, r] | i in ResTasks],
119 rcap[r]) endif));

Listing 1.4: Incorrect argument order in call to cumulative

The FlatZinc programs for these instances can be quite large, making full
enumeration of MUSes a time consuming task even for a single instance. We
therefore use our deepening approach and instruct it to finish at the relatively
shallow depth of 8. Since we are interested in comparing diagnoses across in-
stances, we generalise the paths by removing all specific assignments from them.
This allows us to group larger sets of program constraints together into even
fewer abstract constraints, to avoid searching at an unnecessary level of detail.
In the case of the RCMSP model this grouping means that the MUS enumera-
tion algorithm only needs to look at combinations of twelve abstract constraints
regardless of instance data. The instance data will only change which abstract
constraints fail. Using these settings we can very quickly discover MUSes for
each instance, and report them in terms of the model-level constraints.

For these instances the algorithm discovers five distinct MUSes. These MUSes
occur in instances {0, 1, 2, 5, 6}, {3, 4}, {1, 5}, {2, 6} and {2}. The first MUS oc-
curs in 5 of the 7 instances and as such is a strong candidate for being a model-
level bug. Indeed, this MUS involves the incorrect arguments to cumulative.
The instance that does not include this exact MUS also relates to cumulative

but it fails in a slightly different way leading to a different MUS. Once the bug

has been fixed the user can run the analysis again which will show that there are
only two MUSes remaining. These remaining MUSes occur in instances {3, 4}
and {2, 6} which correspond to the instances with the two classes of faults.

7 Related Work

There has been much work in the area of program level MUS enumeration.
Some approaches focus on specific constraint systems. For example for mixed
integer linear programming, properties of the linear system can be taken into
account [14,7]. For unsatisfiable numerical CSPs (NCSPs) [5], algorithms exploit-
ing structure inherent to NCSPs to prune the power-set of program constraints.

Several algorithms have been proposed for constraint agnostic MUS enumera-
tion [13]. QuickXplain [8] attempts to discover MUSes using a divide and conquer
approach.Later approaches such as DAA [2] have more powerful techniques for
pruning the search space.DAA’s main drawback was that it has to enumerate
very large hitting sets and as a result had a high memory and time cost. The
MARCO algorithm [12] and the more recent MCS-MUS-BT [1] provide much
more efficient approaches for finding MUSes (see section 4).

At the modelling system level there has been some effort to provide more
meaningful explanations of unsatisfiability. In [9] users can explicitly group their
constraints, giving a user friendly name to each sub-group. When a constraint
system is found to be unsatisfiable these names are used to provide feedback.
CPTEST [10] is a modelling system level framework that can aide a user in
correcting several types of faults in iterations of an initially correct model.

8 Conclusion

When faced with an unsatisfiable model the user is typically on their own when
it comes to debugging. Generating useful diagnoses for the user can make the
task easier. The main contribution of this paper is an approach that aims to find
Minimal Unsatisfiable Subsets (MUSes) faster and to present them to the user
in such a way that allows them to quickly find the source of unsatisfiability.

We utilise model-level structure to group related constraints together during
MUS enumeration, which reduces the search space and can speeding up the
discovery of diagnoses. Using MiniZinc paths we are able to highlight in the
user’s model the exact pieces of code that, when combined, are unsatisfiable.

We also presented a methodology for deducing, given a set of satisfiable and
unsatisfiable instances, whether the model has a bug. Further we can help a user
group unsatisfiable instances by the types of unsatisfiability that they introduce.

Future work. We will integrate the approaches explored here into the MiniZinc
compiler, providing a more consistent interface for users. The UI for displaying
MUSes in the MiniZinc IDE, while already useful, could be improved by showing
the values of index variables in the modelling window, making it easier for users
to figure out which specific iterations are involved. Finally, integrating solvers
based on Lazy Clause Generation [17,3] more tightly with the MARCO algorithm
seems a promising direction to further speed up MUS enumeration.

References

1. Bacchus, F., Katsirelos, G.: Finding a collection of MUSes incrementally. In: Quim-
per, C. (ed.) CPAIOR 2016. Lecture Notes in Computer Science, vol. 9676, pp.
35–44. Springer (2016)

2. Bailey, J., Stuckey, P.J.: Discovery of minimal unsatisfiable subsets of constraints
using hitting set dualization. In: Hermenegildo, M.V., Cabeza, D. (eds.) Practical
Aspects of Declarative Languages: 7th International Symposium, PADL 2005, Long
Beach, CA, USA, January 10-11, 2005. Proceedings. Lecture Notes in Computer
Science, vol. 3350, pp. 174–186. Springer (2005)

3. Feydy, T., Stuckey, P.J.: Lazy Clause Generation Reengineered. In: Gent, I.P. (ed.)
Proceedings of the 15th International Conference on Principles and Practice of
Constraint Programming. Lecture Notes in Computer Science, vol. 5732, pp. 352–
366. Springer (2009)

4. Frisch, A.M., Grum, M., Jefferson, C., Martnez, B., Miguel, H.I.: The design of
ESSENCE: a constraint language for specifying combinatorial problems. In: IJCAI-
07. pp. 80–87 (2007)

5. Gasca, R.M., Valle, C., Gómez-López, M.T., Ceballos, R.: Nmus: Structural anal-
ysis for improving the derivation of all muses in overconstrained numeric csps. In:
Borrajo, D., Castillo, L., Corchado, J.M. (eds.) Current Topics in Artificial In-
telligence: 12th Conference of the Spanish Association for Artificial Intelligence,
CAEPIA 2007, Salamanca, Spain, November 12-16, 2007. Selected Papers. Lecture
Notes in Computer Science, vol. 4788, pp. 160–169. Springer (2007)

6. Gent, I.P., Walsh, T.: CSPLib: A Benchmark Library for Constraints. In: Jaffar, J.
(ed.) Principles and Practice of Constraint Programming - CP’99, 5th International
Conference, Alexandria, Virginia, USA, October 11-14, 1999, Proceedings. Lecture
Notes in Computer Science, vol. 1713, pp. 480–481. Springer (1999)

7. Gleeson, J., Ryan, J.: Identifying minimally infeasible subsystems of inequalities.
INFORMS Journal on Computing 2(1), 61–63 (1990)

8. Junker, U.: Quickxplain: Conflict detection for arbitrary constraint propagation
algorithms. In: IJCAI01 Workshop on Modelling and Solving problems with con-
straints (2001)

9. Jussien, N., Ouis, S.: User-friendly explanations for constraint programming. In:
Kusalik, A.J. (ed.) Proceedings of the Eleventh Workshop on Logic Programming
Environments (WLPE’01), Paphos, Cyprus, December 1, 2001 (2001)

10. Lazaar, N., Gotlieb, A., Lebbah, Y.: A CP framework for testing CP. Constraints
17(2), 123–147 (2012)

11. Leo, K., Tack, G.: Multi-Pass High-Level Presolving. In: Yang, Q., Wooldridge,
M. (eds.) Proceedings of the Twenty-Fourth International Joint Conference on
Artificial Intelligence, IJCAI 2015, Buenos Aires, Argentina, July 25-31, 2015. pp.
346–352. AAAI Press (2015)

12. Liffiton, M.H., Malik, A.: Enumerating infeasibility: Finding multiple muses
quickly. In: Gomes, C., Sellmann, M. (eds.) Integration of AI and OR Techniques in
Constraint Programming for Combinatorial Optimization Problems: 10th Interna-
tional Conference, CPAIOR 2013, Yorktown Heights, NY, USA, May 18-22, 2013.
Proceedings. Lecture Notes in Computer Science, vol. 7874, pp. 160–175. Springer
(2013)

13. Liffiton, M.H., Previti, A., Malik, A., Marques-Silva, J.: Fast, flexible mus enumer-
ation. Constraints 21(2), 223–250 (2015)

14. van Loon, J.: Irreducibly inconsistent systems of linear inequalities. European Jour-
nal of Operational Research 8(3), 283 – 288 (1981)

15. Nethercote, N., Stuckey, P.J., Becket, R., Brand, S., Duck, G.J., Tack, G.: MiniZinc:
Towards a Standard CP Modelling Language. In: Bessiere, C. (ed.) CP. Lecture
Notes in Computer Science, vol. 4741, pp. 529–543. Springer (2007)

16. O’Callaghan, B., O’Sullivan, B., Freuder, E.C.: Generating corrective explanations
for interactive constraint satisfaction. In: van Beek, P. (ed.) Principles and Practice
of Constraint Programming - CP 2005, 11th International Conference, CP 2005,
Sitges, Spain, October 1-5, 2005, Proceedings. Lecture Notes in Computer Science,
vol. 3709, pp. 445–459. Springer (2005)

17. Ohrimenko, O., Stuckey, P.J., Codish, M.: Propagation = Lazy Clause Generation.
In: Bessiere, C. (ed.) Proceedings of the 13th International Conference on Principles
and Practice of Constraint Programming. Lecture Notes in Computer Science, vol.
4741, pp. 544–558. Springer (2007)

18. Ouis, S., Jussien, N., Boizumault, P.: k-relevant explanations for constraint pro-
gramming. In: Russell, I., Haller, S.M. (eds.) Proceedings of the Sixteenth Inter-
national Florida Artificial Intelligence Research Society Conference, May 12-14,
2003, St. Augustine, Florida, USA. pp. 192–196. AAAI Press (2003)

19. Stuckey, P., Becket, R., Fischer, J.: Philosophy of the MiniZinc challenge. Con-
straints 15(3), 307–316 (2010)

	Debugging Unsatisfiable Constraint Models

