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Abstract. Ridesharing schemes, which match passengers to private car journeys
with spare seats, are becoming popular for reducing costs, emissions and conges-
tion. Current systems offer matches to participants based on trip details and on
preferences, but do not optimise for global system objectives like maximising the
number of served users. They are similarly not applicable to real-time matching
for high demand ridesharing. In this paper, to limit the inconvenience of drivers
who share their journeys, we respect in the solution the specific route and travel
duration intended by each driver. The goal is to assign riders to drivers and max-
imise the number of participants who receive a match. We first present a basic
model. We then consider two reformulations. The first reformulation is based
on computing sets of time-consistent riders for each driver. The second is based
on observation about driver speed along the route. We make two contributions.
We first propose a first reformulation of the ridesharing problem based on the
drivers’ time-consistent sets of feasible rides. We then introduce an other refor-
mulation based on a restriction of the drivers’ paths constraints that significantly
speeds up the solving time. We demonstrate the scalability of the approach on
four real-world ridesharing clusters. We show empirically that our first reformu-
lation performs better on instances with few shifters, i.e., drivers that are willing
to become passengers. Our second reformulation is one order of magnitude faster
than the initial problem description, and can return within one minute an optimal
ridesharing plan for thousands of users.

1 Introduction

Ridesharing schemes are becoming popular in large city regions, where prospective
passengers are matched to spare seats in private car journeys. The overall problem is a
combination of a routing and scheduling optimisation with a matching problem. Suc-
cessful schemes reduce travel costs for participants and take cars off the roads, thus
reducing emissions and congestion. In flexible ridesharing schemes, some drivers may
be willing to change role and accept a ride from other drivers, Agatz et al [1]. Allow-
ing this flexibility enhances the sustainability benefit of the schemes, since it directly
reduces the number of cars being used. Armant et al. [4] showed that increasing the
number of flexible drivers in some real-world schemes could correct a critical imbal-
ance between drivers and riders while increasing the number of participants who receive
a match. Most deployed applications focus on the online problem of proposing attrac-
tive matches to individual participants, concentrating on user preferences, rather than
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addressing the system-wide optimisation problem. Fast and scalable solutions for max-
imising the number of served participants remains an open challenge that have not been
tackle. As more cities introduce penalties to discourage drivers from using their cars
during high pollution periods, or offer faster routes for high occupancy vehicles, the
need for managing high-demand schemes will grow.

In this paper, we address the problem of returning in real time optimal plans in high-
demand ridesharing context. We solve the problem of maximising the number of served
users to ensure the long-term viability of the scheme. To encourage drivers to participate
to the ridesharing scheme, we consider fixed driver path constraints. Drivers pick-up and
drop-off passengers on their usual path and the travel duration is fixed (in the plan). We
propose two reformulations for flexible ridesharing schemes, reformulating the core
resource allocation constraints. The first reformulation is based on an aggregation of
each driver’s feasible rides into time-consistent sets of rides. We then introduce an other
reformulation that simplified the driver’s path constraint to speed up the solving of the
reformulated problems. We evaluate the approach empirically, based on datasets of trip
adverts and requests from real ridesharing schemes. We show that the new formulations
are up to one order of magnitude faster than the initial ridesharing modelisation, finding
system-wide matches for thousands of participants in under one minute.

2 Related work

The dial-a-ride problem has long been studied in the OR community Cordeau and La-
porte [7]. Dial-a-ride typically assumes a single vehicle, picking up and dropping off
riders at specified locations within time windows, although multiple vehicle problems
have also been studied Berbeglia et al [6] and Attanasio et al [5]. The dial-a-ride drivers
have no strong journey requirements of their own. For ride-sharing schemes, both the
drivers and the riders have their own objectives, Furuhata et al [8]. Specific schemes
vary as to whether the drivers move to the riders’ locations or the riders move to and
from the drivers’ routes, and whether or not drivers take single or multiple riders on
a trip. One extension includes participants known as shifters, who may either drive or
ride as a rider, Agatz et al. [1]. Armant and Brown [3] also include shifters, but assume
that each pure rider who is not served in the matching has a probability of driving on
his own, included as a penalty in the objective function. Armant et al. [4] assess the per-
formance of a deployed ride-sharing scheme and evaluate the potential of persuading
drivers to become passengers. They show that increasing driver flexibility could have a
significant impact, reducing the number of cars on the road while increasing the num-
ber of matched participants. Computing an optimal matching is hard, Agatz et al. [2],
and the complexity increases as the number of shifters increases. Kamar and Horvitz
[9] model the problem as one of collaborative planning, where agents must balance
competing goals. Yousaf et al. [13] model the problem as multi source-destination path
planning, with a wide range of competing objectives including privacy and incentives.
Schilde et al. [11] and Manna and Prestwich [10] consider stochastic problems, in which
trip requests arrive during the execution of the solution, using scenario-based methods
to minimize expected delays or unserved requests. Simonin and O’Sullivan [12] focus
on the matching problem, assuming an input graph of all feasible pairings, and establish
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the complexity of a number of variations, showing that in some cases polynomial time
solutions are possible.

3 Notation

Drivers and riders will post adverts for their trips, specifying locations, earliest de-
partures and latest arrivals. From these adverts, we compute time-windows for each
possible ride share, and define time-consistent trips. Our goal is to formalize and solve
the problem of high demand ridesharing, arising in the context of exceptional events
by finding a match for the greatest number of users. We introduce the following nota-
tion. The set of ridesharing users U are partitioned into three sets, D, the set of drivers
offering seats in their cars, R, the set of riders asking for a ride, and S, the set of
shifters, i.e., drivers willing to change role and becoming passengers. L = {l1, . . . , ln}
denotes the set of road node locations identified by their GPS coordinates. The path
πuli,lj = (li, . . . , lj) is the ordered list of locations visited by a user u ∈ U from lo-
cation li to lj . When there is no ambiguity, we denote by πu the full path of u from
the starting location l?u to the destination l�u . The location l↑d,r ∈ πd (resp. l↓d,r ∈ πd)
denotes the pick-up (resp. drop-off) point of r in the path of d. For simplicity, when a
driver d and a rider r already appear in the notation we denote the pick-up (resp. drop-
off) by l↑ (resp. l↓). The time t(πuli,lj ) denotes the time for a user u to traverse π from
lj to lj . The time t(πuli,lj ) is negative if li precedes lj in πu. In this case, it represents

the reverse travel time from li to lj . The time tearlyli,u , (resp. tlateli,u ) represents the earliest
time (resp. latest time) the user u can be at the location li. From the earliest start time
tearlyl?d

of d, and the earliest start time tearlyl?r
of r, we define the earliest pick-up time

tearly
l↑,d,r

at the pick-up location l↑ as the earliest arrival of d and r at the pick-up point:

tearly
l↑,d,r

= max(tearlyl?d
+ t(πrl?d,l↑

), tearlyl?r
+ t(πrl?r ,l↑)).

Similarly, from the latest arrival time tlate
l�d

of d, and the latest arrival time tlate
l�r

of r, we

define the latest pick-up time of tlatel↑,d,r as the latest time departure of d and r from the
pick-up point:

tlatel↑,d,r = min(tlate
l�d
− t(πd

l↑,l�d
), tlate

l�r
− t(πr

l↓,l�r
)− t(πd

l↑,l↓r
)).

For the sake of clarity, we illustrate the notations describing a feasible ridesharing
trip between a driver d and a rider r in the Figure 1. The black plain line depicts the path
of d, πd, from its departure l?d to its destination l�d . The first dashed grey line depicts
the pick-up path of r from its departure l?r to the pick-up point l↑. The second dashed
grey line depicts the drop-off path of r from its drop-off point l↓ to its destination l�r .
We also depict the delivery time window [tearlyli , tlateli ] at the location li in the path πd.

Given these notations we can now define time-consistent ridesharing trips between
drivers and riders.

Definition 1 (Time-consistent ridesharing trip) A ridesharing trip between a rider
r ∈ R ∪ S and a driver d ∈ D ∪ S, is time-consistent if :
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Fig. 1: Feasible ridesharing trip betwen a driver d and a rider r

1. πrl↑,l↓ is a subpath of πd,

2. At any point li in the path πd, the consistent delivery time window [tearlyli,d,r , t
late
li,d,r] is

s.t. :
(a) tearlyli,d,r = tearly

l↑,d,r
+ t(πdl↑,li)

(b) tlateli,d,r = tlatel↑,d,r + t(πdl↑,li)

(c) tearlyli,d,r ≤ tlateli,d,r

We denote by G = (D∪S,R∪S,E) the graph of time-consistent ridesharing journeys
between drivers and riders s.t. E ⊆ (D ∪ S)× (R ∪ S).

4 Maximizing the number of served users

The overall aim of ride-sharing is to improve mobility by providing rides to users with-
out cars, and also to reduce the total driven kilometers on our roads. This depends on the
long-term sustainability of the schemes. A ride-sharing scheme is only viable if there
are sufficient participants, and from data on deployed schemes, users stop participating
if they do not regularly receive suitable ride matches. Therefore, our objective in this
research is to maximize the number of served participants. Although on any instance,
this may not produce the minimal total driven distance over the scheme, it does increase
the probability of repeat custom, and thus lower total driven distance over a longer time-
frame. Thus, in the models that follow, we do not account for the driving distance of
unmatched drivers nor for the alternative travel costs of unmatched passengers, and we
do not gain any reward in the objective function for these unmatched participants. As an
aside, we note that the presence of shifters does help to reduce the total driven distance,
since these participants would drive themselves if unmatched, but by re-assigning some
of them as passengers, we remove their individual driving distance and increase the
number of matches.

Informally, the aim is to determine which passengers should ride with which drivers,
and so we consider a solution do be a set of such assignments. To ensure the route and
time window constraints are satisfied, and the number of assigned users maximised, we
represent the problem as a MIP with auxiliary variables and constraints. In the initial
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model, the {0, 1} decision variables xd, xr, xs represent the assigned driver, rider and
shifter. The {0, 1} decision variable yd,r represents a ride-match assignment of the rider
r to driver d’s car s.t. (d, r) ∈ E. The integer variable od,li ∈ [0, qd] denotes the car
occupancy of driver d at location li, bound by the car capacity qd. The continuous
auxiliary variable vd,li represents the time the driver d ∈ D ∪ S leaves the location
li ∈ L. For the driver path πd, predπ(li) denotes the predecessor of li in the path πd.
The set of riders pickπd(li) (resp. dropπd(li)) denotes the feasible ridesharing trip that
can be picked up (resp. dropped off) at li ∈ πd.

Our objective is to maximize the number served users (1). Each rider or shifter as-
signed to be a passenger is served if and only if (iff) they are assigned to exactly one
driver (2). Each driver or shifter assigned to drive is served iff at least one rider has been
assigned to them (3). A shifter can be served as driver or served as a passenger but not
both (4). When a driver leaves a location, the car occupancy is equal to the difference
between the picked up and dropped off passengers plus the car occupancy of the previ-
ously visited location (5). (6) states that when d is assigned the passenger r, the visiting
time anywhere in the path satisfies the conditions of a time-consistent ridesharing trip
(cf. Definition 1).
Our objective

maximize( Σ
u∈U

xu) (1)

subject to:

xr = Σ
(d,r)∈E

yd,r, ∀r ∈ R ∪ S (2)

( Σ
(d,r)∈E

yd,r ≥ 1)⇔ (xd = 1), ∀d ∈ D ∪ S (3)

( Σ
(s,r)∈E

ys,r) ≥ 1)⇒ ( Σ
(d,s)∈E

yd,s = 0), ∀s ∈ S (4)

od,lj = od,li + Σyd,r
r∈pick

πd
(li)

− Σyd,r′
r′∈drop

πd
(li)

,

∀d ∈ D ∪ S, ∀li = predπd(l
j)

(5)

yd,r ⇒ (tearlyli,d,r ≤ vd,li ≤ tlateli,d,r), ∀(d, r) ∈ E,∀li ∈ πd (6)

(2), (3) and (4) are specific to the flexible ridesharing problem and our chosen ob-
jective.

The remaining constraints (5) and (6) can be viewed as a multi resource alloca-
tion problem where riders have to be allocated to drivers’ cars. In this context, the
car capacity constraints (5), along the drivers’ fixed paths, encode the limited resource
capacities specific to the ridesharing problem. The time feasibility constraints of the
rides, (6) define the drivers’ fixed time path constraints. If a passenger and a driver
share a ride, these constraints force the journey of the driver’s journey to be consistent
with the passenger’s time window while allowing the driver to cover its journey within
the same travel time than usual. In the first reformulation, our main contribution is to
rewrite both the multi resource allocation constraints consisting of the time feasibility
constraints and the car occupancy constraints of the ridesharing problem into a simpler
form with fewer variables and easier to solve.
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5 First reformulation: Elimination of the spatio-temporal
resource-allocation constraints and variables

Our aim is to simplify the car capacity constraints and the time dependency constraints
for the delivery of riders along the drivers path. The main idea is to generalize the
definition of time-consistent ridesharing trips between one driver and one rider to one
driver and a set of riders. If we are able to represent all the possible sets of riders a driver
can deliver, at the solving step, when we allocate passenger to drivers’car, we will not
need to determine a consistent time for the pick-up and drop-off of passengers. For this
purpose, we compute for each driver a list of time-consistent sets of riders for which
exists a consistent time window within which the driver can ensure the delivery of the
riders along the path. The drivers’s time-consistent set of riders is the main concept at
the basis of our reformulation of the time feasibility constraints along the driver path.
To tackle car occupancy constraints, we then extend the notion of time-consistent sets
of overlapping riders. Implicitly, the ridesharing trips of two riders overlap if they share
a common leg along the driver path. The overall rewriting represents a spatio-temporal
reformulation of the ridesharing problem into time-consistent set of overlapping rides.
First, we define for the drivers’ time-consistent sets of riders before introducing the
time-consistent sets of overlapping riders. At the end of the section, we formalize the
resource allocation constraints and the car capacity constraints .

5.1 Drivers’ time-consistent sets of riders

We denote by Rd = {r|(d, r) ∈ E} the set of riders sharing a one-to-one time-
consistent ridesharing trip with driver d. We define a driver’s time-consistent set of
riders as follows :

Definition 2 (driver’s time-consistent set of riders) Rkd is a time-consistent set of rid-
ers for the driver d if :

1. Rkd ⊆ Rd, each rider r in Rkd has a time-consistent ridesharing trip with d,
2. at any location li in the path πd, exists a consistent delivery time window [tearly

li,d,Rkd
, tlate
li,d,Rkd

]

for all riders in Rkd s.t. :

(a) tearly
li,d,Rkd

= max({tearlyli,d,r |r ∈ Rkd})
(b) tlate

li,d,Rkd
= min({tlateli,d,r|r ∈ Rkd})

(c) tearly
li,d,Rkd

≤ tlate
li,d,Rkd

We establish the equivalence between the time dependency constraints of the origi-
nal problem and the drivers’ time-consistent set of riders (Definition 2) by the following
proposition.

Proposition 1 Rkd is a time-consistent set of riders for driver d iff at any location li ∈
πd exists a visiting time vd,li for d s.t. ∀r ∈ Rkd , tearlyli,d,r ≤ vd,li ≤ tlateli,d,r
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Fig. 2: Delivery time windows of a driver’s time-consistent ridesharing trips

Proof.
⇒ In Definition 2, at any location in the driver’s path, the delivery time window [tearly

li,d,Rkd
, tlate
li,d,Rkd

]

of a time-consistent set of riders Rkd for a driver d is defined as the intersection of the
delivery time window of each rider r ∈ Rkd (Definition 2a and 2b). Since the time win-
dow [tearly

li,d,Rkd
, tlate
li,d,Rkd

] is consistent at any location in the path πd (Definition 2c), there

is a time within the time window [tearly
li,d,Rkd

, tlate
li,d,Rkd

] for which the driver can visit the

location while satisfying the delivery of all riders in Rkd .
⇐ If at any location of the driver’s path there is a consistent visiting time to deliver a set
of passenger Rkd , at any location in the driver’s path there is a consistent time window
for the delivery of the set of passengers. Rkd is then a time-consistent set of riders. �

In Figure 2 we show two time-consistent sets of riders a driver d is able to deliver
depending on the starting time at a specific location li in its path. If the driver starts
from li between 9:30am and 10am he can pick up the riders {r1, r2, r3}. The latter set
is a time-consistent set of riders for the driver d. {r3, r2, r5} is another time-consitent
for d. In this example there are no time-consistent sets containing both r3 and r4.

From a computational point of view, computing the time-consistent sets of riders for
each driver and at each location in the path of the driver may be intractable. The next
proposition shows that the size of the delivery time window of each time-consistent set
of riders is constant along the driver path.

Proposition 2 Given a time-consistent set of riders Rkd of a driver d, at any location li
in the path πd, the size of the delivery time window for Rkd is constant.

Proof. By Definition 2, we know that for each time-consistent set of riders Rkd of a
driver d, exists at any location in the path πd a consistent time window for the pick-up
and the delivery of the riders in Rkd . Let us consider two consecutive locations li, lj in
driver’s path πd and the travel time t(πli,lj ) between the locations. We have the fact that
the difference between the earliest start times of the delivery time window of the time-
consistent set of riders for two consecutive locations li, lj in driver’s path πd is equal
to the travel time between the two locations : tearly

lj ,d,Rkd
− tearly

li,d,Rkd
= t(πli,lj ). Similarly
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we have the fact that the difference between the latest start times of the delivery time
window of the time-consistent set of riders for the two consecutive locations li, lj is also
equal to the travel time between the two locations : tlate

lj ,d,Rkd
− tlate

li,d,Rkd
= t(πli,lj ). As a

consequence, we have tlate
lj ,d,Rkd

− tearly
lj ,d,Rkd

= tlateli,d,r + t(πli,lj )− (tearly
li,d,Rkd

+ t(πli,lj )) =

tlateli,d,r − t
early

li,d,Rkd
. Therefore the size of delivery time window remains the same from li

to lj . We deduce that the size of the delivery time window of a time-consistent set of
riders tlate

li,d,Rkd
− tearly

li,d,Rkd
at any point li in the path πd remains the same. �

As a consequence of this proposition, for each driver, we just have to represent the
list of time-consistent sets of riders for one location in the path.

5.2 Driver’s time-consistent set of overlapping riders

The time-consistent sets of riders represents the time-feasibility constraint along the
driver path but not the car occupancy constraints of the driver. We tackle this issue in
this section by the notion of time-consistent set of overlapping riders. We denote by
posπd(l) the position of l in the path πd.

Definition 3 (Driver’s time-consistent set of overlapping riders) Okd is a time-consistent
set of overlapping riders for the driver d, if :

1. Okd is a time-consistent set of riders
2. {r, r′} ⊆ Okd is s.t. :

(a) the drop-off of r′ is between the pick-up and the drop-off of r : posπd(l↑) ≤
posπd(l

↓
d,r′) ≤ posπd(l

↓
d,r)

(b) or, the pick-up of r′ is between the pick-up and the drop-off of r : posπd(l↑) ≤
posπd(l

↑
d,r′) ≤ posπd(l

↓
d,r)

The example shown in Figure 3 extends the example of Figure 2 and shows the
sets of overlapping riders along the driver’s path within the time-consistent set of riders
{r1, r2, r3}. The maximal time-consistent overlapping sets of riders are {r1, r2} and
{r2, r3}. If the car capacity of d is greater than one, the overlapping riders will pos-
sibly share a common leg in the driver’s path. Otherwise, if the driver offers only one
spare seat, the only time-consistent sets of overlapping riders fitting to the car are the
singletons {r1}, {r2}, {r3}. The riders r1 and r3 are time consistent but do not overlap
along the path πd. Consequently driver d is able to deliver these two riders even if its
car capacity is one.

Before presenting the reformulation, the following proposition establish the corre-
spondence between the resource allocation constraints and the car capacity constraints
of the initial ridesharing problem.

Proposition 3 If a time-consistent set of overlapping riders Okd fits the car capacity of
the driver d, the car occupancy constraints (5) and the time feasibility constraints (6)
defined for d and Okd are satisfiable.
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Fig. 3: Overlaping rides of the time-consistent set {r1, r2, r3}

Intuitively, we have shown the correspondance between the notion of time-consistent
set of riders and the resource allocation constraints (6) in Proposition 1. By Definition 3,
a time-consistent set of overlapping riders represents a set of riders sharing a common
leg in the driver’s path. If the size of the set of the overlapping ridersOkd does not exceed
the driver’s car capacity, it satisfies constraint (5).

5.3 Encoding the new ridesharing resources allocation constraints

For each driver, computing all its time-consistent sets of riders even for one location,
may be inefficient. To avoid this pitfall, we consider maximal time-consistent sets of
riders.

Definition 4 (maximal time-consistent set of rides) The set M i
d is a maximal time-

consistent set of riders for d if:

1. M i
d ⊆ Rd

2. ∀Rkd ⊆ Rd if M i
d ⊆ Rkd then M i

d = Rkd

In Figure 2 the highlighted time-consistent sets {r1, r2, r3} and {r4, r2, r5} are maxi-
mal.

For each driver, the maximal time-consistent sets of riders represent all feasible
subsets of assignments of riders to the driver’s car. We introduce here the constraints
corresponding to the time-feasible constraints (6). A maximal time-consistent set of
riders represents a possible set of passengers the driver is able to deliver regardless the
car capacity. We handle the car capacity constraints in the next paragraph. In our ini-
tial problem description, yd,r represents the assignation of a ridesharing trip between
d and r. In the reformulation, for each driver, we indirectly encode the list of maximal
time-consistent sets of riders by forbidding all non time-consistent riders. For this pur-
pose, constraints (7) encode a conflict between each pair of non time-consistent riders
belonging to two distinct maximal sets. Implicitly these conflicts force the ridesharing
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Fig. 4: Optimal solutions found for benchO (having no shifters) and benchS (having shifters) in
region 3

solution for each driver to a belong a subset of one of its maximal time-consistent set
of riders.

(yd,r = 1)⇒ (yd,r′ = 0),
∀d ∈ D ∪ S, ∀r ∈M i

d \M j
d ,∀r′ ∈M

j
d \M i

d

(7)

The constraints (7) add no new decision variables. The path consistency constraints of
the ridesharing trip are indirectly described by the unauthorized pair of rides.

Similarly, for efficiency, we do not compute for each driver the list of all time-
consistent sets of overlapping riders.We only compute the maximal time-consistent sets
of overlapping riders: MOkd . To reformulate constraint (5) we restrict the number of
assigned ridesharing trips represented by MOkd by the car capacity qd.

0 ≤ Σyd,r
r∈MOkd

≤ qd

∀d ∈ D,∀M i
d ∈Md,∀MOkd ∈M i

d

(8)

In our reformulation of the original ridesharing model, we replace the time-feasibility
constraints (6) and the car occupancy constraints (5) by constraints (7) and constraints (8).

6 Second Reformulation: Simplifying the path constraints

In the previous reformulation we eliminate the drivers’ car occupancy variables and
the drivers’ path time variables. Our next contribution is a second reformulation of the
drivers’ fixed time path constraints into a simpler form. First, we introduce the following
proposition:

Proposition 4 If a driver shares a consistent time window with a set of passengers, it
is able to deliver theses passenger without wasting time on the path.

In the previous section, Proposition 2 shows that a driver can deliver a set of passengers
when they share a consistent time windows at any location of the driver’s path. We have
also seen in Proposition 1 that the size of the time windows remain constant along the
driver’s. Consequently, if a driver starts its journey within this consistent time window
and does not waste time between two locations, he will be able to deliver the set of
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passengers. Using the previous proposition, we can now reformulate the initial drivers
path consistency constraints (6) by the two following constraints.

yd,r ⇒ (tearly
l↑,d,r

≤ vd,l↑ ≤ tlatel↑,d,r), ∀(d, r) ∈ E (9)

vd,lj = vd,li + t(πli,lj ) ∀d ∈ D ∪ S,∀li = predπd(l
j) (10)

Constraints (9) force a consistent time window for drivers to visit the pick-up loca-
tion of the passengers. Note that, here, the time window consistency is only enforced at
the pick-up location. Constraints (10) force the time of the driver’s journey to be equal
to t(πd) and do not allow any waiting time between two locations. Together, the last
constraints enforce the existence a no waiting path for a driver to deliver its passengers.
There is no need to enforce a consistent time window for drop-off, it is implies by the
conjunction of the two constraints.

7 Experimental protocol and benchmarks

To evaluate the time performance and the scalability of the different approaches, we
measure the solving time for returning an optimal ridesharing plan while increasing the
number of participants in the ridesharing problem. Each point in the plots represents the
mean of 10 runs executed on a machine having 12 cores of 2.50GHz and 64GB of RAM,
using the CPLEX solver. The data sets represent real ridesharing trips provided by our
industrial partner and advertised for a specific day of the week. The advertised rideshar-
ing trips have been collected for a period of two years for region 1 and region 2, nine
months for region 3 and region 4. To check the scalability of our approach, we gradually
increase the number of participants by selecting advertised ridesharing trips in chrono-
logical order from the data sets. Region 3 and region 4 represent big agglomerations
where ridesharing is commonly used by commuters and contain road infrastructures
such as High Occupancy Line to push drivers to share their journeys. Region 1 and
region 2 are small areas where ridesharing is not consider yet as a daily alternative to
public transport. For each dataset, we infer a flexible time window for each user based
on the history of successful ridesharing trips from the same data sets. The observed fea-
tures correspond to the maximal time changes drivers and riders are willing to accept to
share the trip, or the maximal distance a rider will accept for a ride. From the inferred
users’ time windows, we build a graph of time-consistent ridesharing trips between
drivers and riders. We use the graph of time-consistent collected ridesharing trips to
build two benchmarks. The first benchmark benchO consists of the original ridesharing
requests collected from the four different regions. In Table 1, we describe the parame-
ters of an instance in benchO for each region. The notations Users*, Drivers*, ..., denote
users having at least one match in the feasible match graph. The instances of benchO
are characterized by a ratioRiders(R∗+S∗)/Drivers(D ∗/S∗) < 1 or a small num-
ber of shifters. As a consequence, the imbalance between riders and drivers may act as
disincentive for participants that may not find a suitable match to share their rides.

To readjust the imbalance between riders and drivers, in the second benchmark,
benchS, each trip initially advertised for driver role is considered as a potential shifter,
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Users Users* Drivers* Riders* Shifters* (R*+S*)/ Edges Matches
D* R* S* (D*+S*) per user*

region 1 1000 955 564 326 65 0.62 7231 757
region 2 1000 950 524 378 48 0.70 10306 10.85
region 3 1000 973 698 275 0 0.40 11695 12.02
region 4 1000 808 503 306 1 0.60 2795 3.46

Table 1: Instance parameters in benchmark: benchO (original users’ requests)

i.e., a driver that may accept to become a passenger when it can match as a passenger
of an other driver. Considering shifters instead of drivers introduce two potential sus-
tainable benefits. Users have more opportunities to find a match (cf. Matches per user
in Table: 2). In addition, since original drivers will be proposed to share their journeys,
cars will potentially be removed from the roads. As a consequence, the combinatorial
complexity associated to shifter role make these ridesharing problem instances harder
to solve.

Users Users* Drivers* Riders* Shifters* (R*+S*)/ Edges Matches
D* R* S* (D*+S*) per user*

region 1 1000 967 158 338 471 1.29 12464 12.89
region 2 1000 954 139 387 428 1.44 16957 17.77
region 3 1000 980 48 277 655 1.33 39172 39.97
region 4 1000 856 161 695 329 1.32 5968 6.97

Table 2: Instance parameters in benchmark: benchS (drivers become shifters when it is possible)

8 Results

In Figure 4 we compare the optimal number of served users a), and the distribution of
served users as riders b) and served users as drivers c) returned when solving rideshar-
ing problems of same size for the two benchmarks. In Figure 4 a), the optimal solutions
returned for the problem instances with shifters of benchS assign almost all the partic-
ipants to a ridesharing trip. When there are no shifters, the optimal solution assigned
around 50% of the users.

For the two benchmarks, (benchO, benchS) the proportion of assigned users as
drivers represents respectively 30% and 60% of the users. Similarly, the proportion
of assigned riders diverges for the two instances and represents up to 60% of the users
for the instances with shifters and up to one third of the users for the instances of ben-
chO. The same pattern can be observed for the percentage of assigned users as drivers.
Intuitively, In the presence of shifters our model prefers to distribute the satisfied riders
over different drivers’ cars rather than merging them in one car. This characteristic is
suitable for maintaining long-term sustainability of the ridesharing scheme.

In Figure 5 and Figure 6 we evaluate the solving performance of maximizing the
number of served users. The original model M1 is the ridesharing model introduced
in section 4. The reformulated model M2 represents the first reformulated ridesharing
model introduced in section 5. It encodes the resource allocation constraints and the car
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Fig. 5: CPU time for solving optimally the intances of benchO in the four regions

capacity constraints based on the drivers’ maximal time-consistent sets of overlaping
riders. The second reformulated model M3 introduced in section 6 is based on a restric-
tion of the ride-sharing path constraint on the auxiliary variables that does not remove
any solutions.

8.1 Evaluation of solving time performance of instances where users have fixed
role

In Figure 5, we evaluate the solving time performance of maximizing the served users
on ridesharing problem instances of the benchmark benchO, where there are few shifters.
For all the models and the regions, the time to find an optimal ridesharing plan for in-
stances up to 1000 users is less than 20 seconds. At more than 1000 users in region 3
and 2000 users in region 4, the solving time of the initial model M1 grows rapidly and
exceed one minute. In contrast to M1, the solving time of the reformulated models M2
and M3 grows slowly and steadily for all instances and never exceed 10 seconds, resp.
20 seconds, in the worst case. Consequently, when we compare the solving time per-
formance of the different models on the largest number of users, the new reformulated
models, M2 and M3 are up to one order of faster than the model original model M1.
The efficiency of both methods can be partially explained by the absence of shifters
making the instance easier to solve. For this benchmark the solving time of M3 is al-
ways slightly faster or similar to the solving time of M3. In the next section we consider
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Fig. 6: CPU time for solving optimally the intances of benchS (with shifters) in the four regions

a more flexible ridesharing scheme where each driver is considered as shifter when the
latter has a possible match as passenger.

8.2 Evaluation of solving time performance of instances where drivers can
change role

In the second set of experiments we move to harder problems. In Figure 6, we eval-
uate the solving time performance of maximizing the served users on the ridesharing
problem instances of the benchmarks benchS allowing drivers to change role when it is
possible. Compare to the benchmark bench0, depending on the model and the region,
the solving time can be multipled by a factor of ten. Here the experiments show the
superiority of M3 over M1 and M3 for solving hardest instances. The model M3 is
up to factor of 2 faster than M2 for solving the instances in region 1 and it is up to one
order of magnitude faster than both M2 and M1 for solving the other instances.

In region 1 Figure 6 q), the model M1 using the initial formulation for encoding
resource allocation problem solves efficiently small instances then it suddenly grows
drastically while the solving time of the model M2 and M3 remain very fast. For the
largest instances of region 1, the solving time of M3 is a factor of 2 faster than M2 and
a factor of 4 faster than M1.

In region 2 Figure 6 b), only the solving time of M3 remains very fast and is up to 20
seconds for largest instance of the region. The solving time of M2 grows unexpectedly
exponentially after 1400 users to reach 15 mins to solve the largest instance of the
region. Inversely, the solving time of M1 grows steadily and finishes at 1min30s.
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The ridesharing instances of region 3 in Figure 6 c) are characterized by the high
number of possible ride matches per users, ( cf. Table 2). These instances are harder to
solve. The solving times of M1 and M2 do not scale and show rapidly an exponential
pattern after 700 users. It is not the case for M1 that solves 1000 users in less than 30
secs and 2400 users in less than 5 minutes.

In region 4 Figure 6 c), the graphs of feasible matches show a lower connectivity
(Table 2). In this case, the solving time of M1 grows steadily to reach 7 minutes for
4800 users. The solving time of M2 and M3 grow very slowly and steadily up to 4600
users. At this point M2 unexpectedly heats the time limit while the solving time of M3
remains very low.

In summary, the solving time of the ridesharing instances with shifters in shows the
benefit of reformulating the drivers’ path constraint using the model M3.The benefit
of the model M3 is more visible when solving the instances of region 4 and region 3
Figure 6 c) qnd d0. OnlyM3 is able to solve all the instances in less than one minute for
1000 users. The other models fail to solve the hardest instances (region 3) within this
time limit and do not scale as nicely as M3 when increasing the size of the instances.

9 Conclusion and Future Work

We have designed new formulations for solving high-demand ridesharing to achieve a
system-wide objective. We have demonstrated empirically that the new models achieve
up to one order of magnitude improvement over a basic model for this problem, and
we are able to find matches for thousands of users in under one minute. This fast and
scalable performance is an important step towards future deployment of ridesharing
schemes. The approach will be applied to more general cases where the aim is to achieve
sustainability objectives such as minimising the number of cars entering an urban area,
or minimising the total driven distance.

For successful deployment of ridesharing schemes, this optimisation approach should
be integrated with user preference and matching optimisation, to ensure that participants
are satisfied with the details of their trips. We have also begun to integrate the rideshar-
ing optimisation model into a multi-modal transport planner. Finally, the improvements
to the model are not specific to ridesharing, and we will investigate their application to
a wider range of resource allocation problems.
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