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An overarching goal in Artificial Intelligence
(AI) is to develop general reasoning techniques.
Constraint Programming (CP) is one such tech-
nique, and it excels at solving discrete satisfac-
tion and optimization problems involving com-
plex constraints such as those appearing in rout-
ing, scheduling, and planning.

However, as the problems move to model com-
plex human and physical behavior, as well as
large-scale systems and infrastructures, it also
becomes increasingly harder for experts to de-
sign CP models with the appropriate accuracy
and efficiency.

Empirical Model Learning [1, 2] has been pro-
posed as a way to overcome this. The key idea
is to learn a function linking decision variables
with observable quantities of interest. The ob-
servations may come from the real system we are
modeling or from a simulator. Machine learning
techniques are then used to extract an empirical
model that accurately generalizes the observa-
tions. This empirical model is then embedded
in the combinatorial optimization specification;
and because the input to the model involves de-
cision variables, it has to be evaluated during
search. CP is especially well-suited for EML
since it easily supports the integration of hetero-
geneous techniques through global constraints.

This is a promising research direction to en-
hance the capability of CP to model real prob-
lems, however, research into this integration has
only just been started. We have identified the
following four main challenges:

Effective propagation of ML models.
Many machine learning models exist, from de-
cision trees to neural networks and Bayesian
networks. Their applicability for EML depends
on the ability to effectively embed the inference
over the ML model in a CP solver. Traditional
issues such as incrementality and the tradeoff
between the strength of propagation and its per-
formance take another dimension in this con-
text.

Trade-off between model accuracy and
optimization efficiency. An accurate ML
model (e.g. a deep leraning network) may lead
to weaker propagation, and therefore lower qual-
ity solutions. On the other hand, an ML model
with a strong propagation algorithm (e.g. a de-
cision tree) may be less accurate from a learn-
ing point of view. This cost-benefit relation has
barely been studied, yet should be core to choos-
ing which ML models to use.

Representative observations. ML learns
from observations, but a lack of observations
in a part of the feature space can lead to false
predictions. A good representative sample can
avoid learning spurious correlations that are far
from causal. Moreover, an open question is
whether to sample the whole observation space
or just the feasible region. Selecting a good set
of samples has been studied in the field of De-
sign of Experiments [3]. Some functions may
be so complex that one needs to interleave sam-
pling/learning with optimization, which is stud-
ied for unconstrained problems in surrogate op-
timization [4]. An interesting challenge would
be to adapt these techniques to discrete, con-
strained optimization problems.

Uncertainty information. A number of ML
models can provide some confidence estimation
on their predictions. To increase robustness, we
may wish to use this information in the opti-
mization to optimize expection or various risk
measures.

Answering these challenges will require a good
understanding of both the machine learning
and optimization methods, and is of interest to
both research domains in AI. Advances on this
topic will allow one to tackle novel combinato-
rial problems that are out of scope of today’s
constraint-programming technology. This will
increase the reach of AI problems for which CP
brings significant benefits.
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