Abstract: Stochastic Constraint Programming and Reinforcement Learning

S. D. Prestwich1, R. Rossi2, S. A. Tarim3

1Insight Centre for Data Analytics, University College Cork, Ireland
2University of Edinburgh Business School, Edinburgh, UK
3Department of Management, Cankaya University, Ankara, Turkey
s.prestwich@cs.ucc.ie, roberto.rossi@ed.ac.uk, at@cankaya.edu.tr

Stochastic Constraint Programming (SCP) is designed to model and solve complex problems involving uncertainty and probability. It was first proposed in [3, 20] and developed in [18]. SCP problems are in a higher complexity class than CP problems and can be much harder to solve, but many real-world problems contain elements of uncertainty so SCP is an important problem class.

Many improvements have been made to SCP in recent years. Better search and filtering algorithms have been proposed [2, 6, 9, 15, 19]. Confidence intervals can be applied to control approximations [16]. If a problem has many decision variables meta-heuristics can be applied [11, 14, 20]. If there are many scenarios then we can apply scenario reduction by sampling [8], and in special cases a subset can be used without approximation [13]. However, so far SCP has not been applied to very large problems.

In contrast, far larger stochastic (and adversarial) problems have been successfully solved by methods from Reinforcement Learning (RL) [10, 17], and the related fields of Neuro-Dynamic Programming [4] and Approximate Dynamic Programming [12]. In RL researchers are not concerned with sample sizes, confidence intervals or other statistical issues, though they are concerned with convergence. RL methods have been successfully applied to real-world problems in many fields including robotics, control, game playing, trading and human-computer interfaces.

We argue that SCP has been held back by its roots in Stochastic Programming [5] and that a more scalable future direction lies in Machine Learning. As a first step we have implemented the simple TD(0) algorithm [17] in the Eclipse constraint system [1] and applied it to a few problems. In our framework, assigning a decision variable is an RL action, assigning a random variable is an RL environmental response that moves to a new state, a constraint is an environmental response that restricts future actions, a partial assignment is an RL state, a complete assignment is an RL terminal state achieved by an RL episode, the empty assignment is the RL initial state, and the objective function is the RL reward. State aggregation techniques are used to handle exponential numbers of scenarios.

Initial results are promising: our algorithm was competitive with a specialised Monte Carlo method on a hard 1-stage problem with a billion scenarios, and on a multistage inventory control problem it found a policy within a few percent of optimal. Our approach might also be applied to adversarial problems such as those in [7].

Acknowledgments This publication has emanated from research supported in part by a research grant from Science Foundation Ireland (SFI) under Grant Number SFI/12/RC/2289.
References