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Preface

The 12th International Workshop on Constraint-Based Methods for Bioinfor-
matics (WCB’16) continues the series of workshops on bioinformatics that were
held alternately in conjunction with the previous CP and ICLP conferences. The
aim of this workshop is to provide a forum where researchers in this area can
exchange ideas, discuss new developments and explore possible future directions.

During the last years, biology has become a source of challenging problems
for the entire field of computer science in general, and for the areas of compu-
tational logic and constraint programming in particular. Successful approaches
to these problems are likely to have significant applications in several fields of
research, such as medicine, agriculture, and industry. The topic of interest are
all those concerning bioinformatics and constraints, and related techniques such
as SAT, Answer Set Programming, Logic Programming, and Integer Linear Pro-
gramming:

– RNA prediction and motif search
– protein structure and functional prediction
– genetic linkage analysis and haplotype inference
– phylogenetic tree reconstruction
– pedigree reconstruction and diagnosis
– genomic selection design
– gene regulatory network inference and analysis
– biochemical network simulation and visualization
– solvers for problems in biology
– metabolic pathway analysis
– DNA sequence assembly
– contig scaffolding
– multiple sequence alignment
– machine learning and big data
– ontologies in biology
– constraint databases in bioinformatics
– logical interfaces to relational biological databases
– web bioinformatics services

Regular WCB submissions were reviewed by up to three reviewers. In ad-
dition to this, the workshop chairs have invited this year bioinformatics papers
submitted to CP2016 Biology Track and to ICLP2016. Papers 6 and 8 were
accepted at CP2016. The ten papers reflected upon the diversity of the active
topics that have been actively pursued, especially on systems biology and se-
quencing data analysis. We hope that these papers can promote future research
on constraints and bioinformatics.

August 2016

Alessandro Dal Palù
Agostino Dovier
Simon de Givry
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Alessandro Dal Palù (Univ. of Parma, Italy),
Agostino Dovier (Univ. of Udine, Italy),
and Simon de Givry (INRA - MIAT, France)

Program Committee

Rolf Backofen (Albert-Ludwigs-University Freiburg, Germany),
Pedro Barahona (Universidade Nova de Lisboa, Portugal),
Alexander Bockmayr (Freie Universität Berlin, Germany),
Mats Carlsson (SICS, Sweden),
Francois Fages (Inria Paris-Rocquencourt, France),
Ines Lynce (INESC-ID/IST, University of Lisbon, Portugal),
Nigel Martin (Birkbeck, University of London, UK),
Alberto Policriti (University of Udine, Italy),
Enrico Pontelli (New Mexico State University, USA),
Sylvain Soliman (Inria Paris-Rocquencourt, France),
Sebastian Will (University Leipzig, Germany),
and Matthias Zytnicki (MIA-Toulouse, INRA, France)

3



Table of Contents

Logic Programming Applied to Genome Evolution in Cancer . . . . . . . . . . . 5
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Maryana Wȧnggren, Martin Billeter, and Graham Kemp

Improving protein docking with redundancy constraints (CP2016 paper) . 114
Ludwig Krippahl and Pedro Barahona

Global Optimization Methods for Genome Scaffolding . . . . . . . . . . . . . . . . . 125
Sebastien François, Rumen Andonov, Hristo Djidjev and Dominique
Lavenier

A Graph Constraints Formulation for Contigs Scaffolding . . . . . . . . . . . . . . 138
Eric Bourreau, Annie Chateau, Clément Dallard and Rodolphe Giroudeau

4



Logic programming applied to
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Abstract. As often observed in the literature, cancer evolution follows
a path that is unique to each patient; therefore, classical analysis based
on the identification of typical mutations, provides little insight in the
understanding of the general rules that drive cancer genesis and evolu-
tion. Recent genome sequencing pipelines allow researchers to retrieve
rich genetic and epigenetic information from sampled tissues. Analyzing
and comparing the evolution of cancer cells for each patient over a large
time span can provide some accurate information and relationships. This
paper presents a project for a logic programming based analysis that pro-
cesses time-related genomic information.

Keywords: Cancer evolution, Genome analysis, ASP

1 Introduction

Modern sequencing techniques applied to genomic studies are now capable of
producing high-throughput data related to specific individuals. With fast and
inexpensive methods, it is possible to retrieve accurate information about a DNA
sequence, its methylation (used for epigenetic studies), histones modifications,
and gene and protein expression. The process can be repeatedly applied to the
same sample over years, for instance, before and after a set of pharmacological
therapies. The evolution of an organism and/or a specific sample of cells at
genomic scale can be tracked when observing such biological properties. The
cancer cells include features such as fast changing genome and cross combination
of different offsprings of tumoral cells.

The classical theory of gene mutation, used since the 70s, defines the can-
cer evolution as a Darwinian process, where the cells compete for survival and
the mutations accumulated over time may produce the insurgence of a tumor.
However, the search for specific markers and pathways did not produce a clear
understanding for many cases. More flexible models could capture the large vari-
ability of DNA mutations observed in the same type of tumors among patients.

? The work is partially supported by INdAM GNCS 2016 project.
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Compared to previous models, where a simple gene mutation was assumed dur-
ing cancer evolution, new data allows a more precise investigation and suggests
new models based on evolution principles. In particular, the temporal dimension
is taken into account in the genomic and epigenomic analysis [29]. This novel
paradigm is reflected in the growing literature on Cancer genome evolution[18]:
this research direction considers the genetic material as a global and detailed
source of information. The changes among cells generations during the develop-
ment of a tumor can be tracked and explained by looking at the global properties
over time.

The goal of our study is to employ Answer Set Programming (ASP) [26,
24] to model new mining techniques, that search for relevant time-dependent
relationships. In particular, differently from classical algorithms, where statisti-
cal analysis is used to identify strong peaks over a noise threshold, we focus on
mixing evolutionary analysis and mutation analysis. The combination of the two
techniques allows us to produce a rich and flexible model. The use of logic pro-
gramming helps in the definition of a declarative model that merges two distinct
aspects: the haplotype identification problem and phylogenetic reconstruction.
The literature has already offered separate logic programming models of these
two problems. In our case, the evolution of cancer genome can provide uniform
input to both problems, namely the search for descriptors of mutations that are
correlated over time.

Along with the modeling of this novel perspective, another challenge is the
size of the data to be analyzed, requiring the use of modern ASP solving tech-
nologies and motivating the exploration of novel resolution models, such as those
based on the use of parallel programming techniques (e.g., GPU programming,
as recently explored in [27, 5, 7, 2, 3]). This paper provides a preliminary report
describing the activities of an ongoing GNCS-2016 project, focused on the anal-
ysis of genome evolution in cancer, and outlining the potential of this research.

2 Background

We assume that the reader is familiar with Answer Set Programming (see, e.g.,
[26]). In this section, we briefly introduce the formalization of two well-known
problems in bioinformatics. The first problem is the haplotype inference prob-
lem [16], i.e., the problem of identifying the minimal set of mutations that explain
those observed on a population-wide genome sequencing. The second problem
considered is the classical problem of phylogenetic inference: the reconstruction
of a tree that summarizes the mutations over time for a set of species.

ASP is particularly suited to the modeling and resolution of these classes of
problems, because of its flexibility in the modeling phase, its elaboration tol-
erance, and the fast prototyping cycle. In the literature, there are examples of
ASP encoding of the haplotyping problem [10] and phylogenetic tree reconstruc-
tion problem [25, 9] (along with other uses of ASP to support phylogenetic data,
e.g., to support complex queries on phylogenetic repositories [4]). These prob-
lems have also been addressed using alternative logic-based and constraint-based
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paradigms—the readers are referred to, e.g., [1, 28] for additional references.
However there are no applications nor combinations of these techniques in the
study of genome evolution in cancer.

2.1 Phylogenetic Inference

Phylogenies are artifacts that describe the relationships among entities (e.g.,
proteins or genomes) derived from a process of evolution. We often refer to the
entities studied in a phylogeny as taxonomic units (TUs) or taxa.

The field of Phylogenetics developed from the domain of biology as a powerful
instrument to investigate similarities and differences among entities as a result
of an evolutionary process. Evolutionary theory provides a powerful framework
for comparative biology, by converting similarities and differences into events
reflecting causal processes. As such, evolutionary-based methods provide more
reliable answers than the traditional similarity-based methods, as they employ
a theory (of evolution) to describe changes instead of relying on simple pattern
matching. Indeed, evolutionary analyses have become the norm in a variety of
areas of biological analysis. Evolutionary methods have proved successful, not
merely in addressing issues of interest to evolutionary biologists, but in regard
to practical problems of structural and functional inference [32]. Evolutionary
inference of pairing interactions determining ribosomal RNA structure [35] is a
clear case in which progress was made by the preferential use of an evolutionary
inference method, even when direct (but expensive and imprecise) experimental
alternatives were available. Eisen and others [31, 8] have shown how an explic-
itly evolutionary approach to protein “function” assignment eliminates certain
categories of error that arise from gene duplication and loss, unequal rates of
evolution, and inadequate sampling. Other inference problems that have been
addressed through evolutionary methods include studies of implications of SNPs
in the human population [31], identification of specificity-determining sites [14],
inference of interactions between sites in proteins [34], interactions between pro-
teins [33], and inferences of categories of sets of genes that have undergone
adaptive evolution in recent history [23].

Phylogenetic analysis has also found applications in domains that are outside
of the realm of biology; for example, a rich literature has explored the evolution
of languages (e.g., [12, 30, 6]). The definitions and techniques employed are the
same; of course the notion of “observable property” can be different. Starting
from genes one notices differences using string matching algorithms. But dif-
ferences (to be analyzed and explained) can be more macroscopic such as the
presence/absence of a tail in an animal or the way one say “father” in a language.

Modeling. Let us consider the problem of phylogenetic tree reconstruction,
namely: given a set of data characterizing the entities being studied (e.g., species,
genes, languages), we wish to identify a phylogeny that accurately describes the
evolutionary lineages among the given entities. We start with the notion of phy-
logenetic tree and then we give the notion of compatibility of characters.

A phylogenetic tree (or simply a phylogeny) is typically a labeled binary tree
(V,E, L, T ,L) where:
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Fig. 1. A Sample Phylogeny (left), compatible (center–Coelom) and incompatible
(right–Dark) characters

• The leaves L represent the taxonomic units being compared;

• The internal nodes V \ L represent the (hypothetical) ancestral units; in rare
cases, the internal nodes correspond to concrete entities (e.g., fossils);

• The edges E of the tree describe evolutionary relationships; the structure of
the edges describe the processes that hypothetically led to the evolution of the
TUs, e.g., biological processes of speciation, gene duplication, and gene loss;

• Commonly, each TU is described by a collection of finite domain properties,
referred to as characters. In the formalization, T = (C,D, f) is the description
of such properties, where

− C = {c1, . . . , ck} is a finite set of characters;

− D = (Dc1 , . . . , Dck) associates a finite domain to each character;

− f : L×C → ⋃
c∈C Dc is a function that provides the value of each character

for each TU being studied.

• We are often interested in the length of the branches of a phylogeny and/or
the assignment of dates to the internal nodes of the phylogeny; if this feature
is present, then we will describe it as a function L : E → R+.

Whenever we do not have information about the length of the branches, we omit
the component L from the description of the phylogeny.

For presentation simplicity, we focus on one example with macroscopic ob-
servable properties. Fig. 1 (left) shows a phylogenetic tree for the TUs L =
{Mollusca, Annelida, Arthopoda, Echinodermata, Chordata}. In this example, the
set of characters is C = {Coelom,Dark}—Coelom denotes the presence/absence
of coelom (a body cavity between the intestine and the body walls), while Dark
denotes the phenotypical character of having dark color. In this example, these
are both binary characters, i.e., DCoelom = DDark = {0, 1}. The function f
describing the five TUs is given by the table underneath each TU in the figure—
e.g., f(Annelida,Coelom) = 0 and f(Annelida,Dark) = 0.

The key point in the phylogenetic tree reconstruction problem is how to define
what does it mean to “accurately describe”, i.e., what measure of accuracy is
used to compare plausible trees. A variety of measures have been proposed, and
various phylogenetic reconstruction methods have been proposed based on the
specific measure being used to assess quality of the phylogeny. A common method

8



used in deriving phylogenies is based on the idea of character compatibility—a
principle derived from Le Quesne’s idea of uniquely derived characters [21, 22].

The intuitive idea of compatibility is as follows: a character c is compatible
with a phylogeny if the TUs that present the same value for such character are
connected by a subtree within the phylogeny. More formally, given a phylogeny
P = (V,E, L, T ,L), with T = (C,D, f), a character c ∈ C is compatible with P
if there is a mapping hc : V → Dc such that:

• For each t ∈ L we have that hc(t) = f(t, c);

• For each i ∈ Dc, the projection of the graph (V,E) on the set of nodes
V c
i = {t ∈ V | hc(t) = i} has a subgraph that has V c

i as nodes and it is a
rooted tree.

A character that is not compatible with a phylogeny P is said to be incompatible.
The above (sub-tree) requirement implicitly states that when a character changes
(during evolution) it never goes back to the previous value. This is referred to
as the Camin-Sokal requirement; moreover, it also accounts for the requirement
that the “change” occurs in a unique place, known as the Dollo requirement.

In the example of Fig. 1, the character Coelom is compatible with the given
phylogeny—as shown in Fig. 1(middle). On the other hand, the character Dark
is not compatible with this phylogeny (as shown in Fig. 1(right)).

The goal, in phylogeny reconstruction, is to determine a phylogeny that max-
imizes the number of characters that are compatible with it. This problem has
been often referred to as the k-incompatibility problem [11]. Formally, the k-
incompatibility problem is the problem of deciding, given a set L of TUs, a
character description T = (C,D, f) of L, and an integer n ∈ N, whether there
is a phylogeny (V,E, L, T ) that has at most k incompatible characters.

2.2 Haplotype Inference

The differences between two organisms of the same species are derived from
differences in some peculiar points of their DNA sequences. We present here
the problem of reconstructing the connection between a set of diploid organisms
(such as humans), given some information about such specific DNA locations.

The DNA of diploid organisms is organized in pairs of not completely iden-
tical copies of chromosomes. The sequence of nucleotides from a single copy is
called haplotype, while the conflation of the two copies constitutes a genotype.
Each person inherits one of the two haplotypes from each parent. The most
common variation between two haplotypes is a difference in a single nucleotide.
Using statistical analysis within a population, it is possible to describe and an-
alyze the typical points where these mutations occur. Each of such differences
is called a Single Nucleotide Polymorphism (SNP). In other words, a SNP is a
single nucleotide site, in the DNA sequence, where more than one type of nu-
cleotide (usually two) occur with a non-negligible population frequency. We refer
to such sites as alleles.

Considering a specific genotype, a SNP site where the two haplotypes have
the same nucleotide is called an homozygous site, while it is heterozygous other-
wise. Research has confirmed that SNPs are the most common and predominant
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form of genetic variation in DNA. Moreover, SNPs can be linked to specific
traits of individuals and with their phenotypic variations within their popula-
tion. Consequently, haplotype information in general, and SNPs in particular,
are relevant in several contexts, such as, for instance, in the study and diagnosis
of genetic diseases, in forensic applications, etc. This makes the identification
of the haplotype structure of individuals, as well as the common part within a
population, of crucial importance. In practice, biological experiments are used to
collect genotype data instead of haplotype data, mainly due to cost or technolog-
ical limitations. To overcome such limitations, accurate computational methods
for inferring haplotype information from genotype data have been developed
during the last decades (for a review, the reader is referred to [17, 15, 16]).

Modeling. The haplotype inference problem can be formulated as follows. First,
we apply an abstraction and represent genotypes and haplotypes by focusing on
the collection of ambiguous SNPs sites in a population. Moreover, let us denote,
for each site, the two possible alleles using 0 and 1, respectively. Hence, an
haplotype will be represented by a sequence of n components taken from {0, 1}.
Each genotype g, being a conflation of two (partially) different haplotypes h1
and h2, will be represented as a sequence of n elements taken from {0, 1, 2},
such that 0 and 1 are used for its homozygous sites, while 2 is used for the
heterozygous sites. More specifically, following [20], let us define the conflation
operation g = h1 ⊕ h2 as follows:

g[i] =

{
h1[i] if h1[i] = h2[i]
2 otherwise

where g[i] denotes the ith element of the sequence g, for i = 1, . . . , n.
We say that a genotype g is resolved by a pair of haplotypes h1 and h2 if

g = h1 ⊕ h2. A set H of haplotypes explains a given set G of genotypes, if for
each g ∈ G there exists a pair of haplotypes h1, h2 ∈ H such that g = h1 ⊕ h2.

Given a set G of m genotypes, the haplotype inference problem consists of
determining a set H of haplotypes that explains G. The cardinality of H is
bound by 2m but, in principle, each genotype having k ≤ n ambiguous sites, can
be explained by 2k−1 different pairs of haplotypes. For instance, the singleton
G = {212} (i.e., k = 2) can be explained in two ways, namely by choosing
H = {011, 110} or H = {010, 111} (see also Fig. 2). Hence, in general, there
might be an exponential number of explanations for a given set G. All of them
are, from the combinatorial point of view, “equivalent” and a blind algorithm—
not exploiting any biological insights—may result in inaccurate, i.e., biologically
improbable, solutions. What is needed is a genetic model of haplotype evolution
to guide the algorithm in identifying the “right” solution(s).

Several approaches have been proposed, relying on the implicit or explicit
adoption of assumptions reflecting general properties of an underlying genetic
model. We focus on one of such formulations, namely parsimony. The main un-
derlying idea is the application of a variant of Ockham’s principle of parsimony:
the minimum-cardinality possible set H of haplotypes is the one to be chosen
as explanation for a given set of genotypes G. For instance the set G in Fig. 2
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Fig. 2. The set G = {212, 121} and two possible explanations

admits two explanations. The one at the bottom, i.e., {010, 111, 101}, is prefer-
able by the parsimony principle. In this formulation, the haplotype inference
problem has been shown in [20] to be APX-hard, through a reduction from the
node-covering problem.

3 Methods

The basic idea is to use ASP to model the genome analysis. In particular, as first
approximation of the problem, we focus on mutations that took place in specific
locations of the DNA (Single Nucleotide Polymorphism). These mutations are
tracked at different moments in time for the same individual and tissue, opposed
to traditional techniques that search for these mutations across a large set of
individuals. Since the data is enriched by time information, it is possible to
integrate haplotype search with phylogenetic structure of tumoral fingerprints.
In fact, cell offspring relationships are strongly related to an evolutionary tree
for species. In our case, it is possible to model different snapshots of the genome
at different points in time, and correlate mutations over time as in the classical
phylogenetic inference. The algorithms for the construction of a phylogenetic
tree need to be modified to capture the evolutionary properties of the various
genomes collected from the same patient. Similar approaches have appeared in
the literature (e.g., [13]), though not based on logic programming. The goal is
to use the combination of haplotyping and phylogenetic tree reconstruction to
reconstruct the mutations over time, and provide an evolutionary map of cancer
haplotypes. The ASP framework allows us to prototype the models and have a
fast feedback about their quality.

3.1 Modeling

The evolutionary haplotype inference problem can be formulated by extending
the formalization presented for the haplotype inference problem. We define a
linear timeline T = t0, t1, . . . , tk−1, whose time-steps are associated to each input
genotype. Formally a timed genotype is a pair (g, ti) made of a genotype g and
a time-step ti ∈ T . A timed haplotype is a haplotype associated to a time step:
formally (h, ti) where h is a haplotype and ti ∈ T .
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We say that a timed genotype (g, ti) is resolved by a pair of timed haplotypes
(h1, tj) and (h2, tk) if g = h1⊕h2, ti ≥ tj and ti ≥ tk. A setH of timed haplotypes
explains a given set G of timed genotypes, if for each g ∈ G there exists a pair
of timed haplotypes such that they resolve g.

We need to introduce the notion of haplotype persistence: given a set H
of timed haplotypes, (h, ti) ∈ H is persistent if for any tj , such that ti ≤ tj ,
(h, tj) ∈ H. In other words, persistent haplotypes in H are defined at specific
time-steps and they will explain any timed genotypes at times greater or equal to
ti. A set H of timed haplotypes is persistent if every haplotype in H is persistent.

The last notion we introduce is the preference over two persistent sets H1 �
H2. Intuitively, we prefer timed haplotypes that appear as late as possible: this
reflects the fact that the occurrence of an haplotype cannot be delayed anymore
and therefore captures some relevant properties in the timed genomes (e.g., con-
sequences of a therapy). On the other hand, any haplotype at a certain time
ti can be introduced at previous time-steps, without violating any properties.
Therefore, a preference that captures the late occurrence of haplotypes reflects a
more accurate characterization of the set H. Note that any solution for the orig-
inal haplotype inference problem can be extended to a timed haplotype solution
by adding the time step t0 to each haplotype.

Formally, given two persistent haplotypes (h, ti) ∈ H1 and (h, tj) ∈ H2,
we say that (h, ti) � (h, tj) if ti ≥ tj . We extend the preference to persistent
haplotype sets: H1 � H2 reflects the fact that the set H1 is preferred to H2,
namely there is no pair (h, ti) ∈ H1 and (h, tj) ∈ H2 such that (h, ti) 6� (h, tj).

Given a set G of timed genotypes, the evolutionary haplotype inference prob-
lem consists of determining sets H of persistent timed haplotypes that explain G
such that there is no other solution H1 � H.

This model introduces only time information to available genotype. It is pos-
sible to extend it to other facts that are annotated with the samples. For example,
the clinical condition of the patient can provide information about therapies and
other physiological parameters. The timed genotypes can be enriched by a tuple
of properties that could help in the comparison between solutions of evolution-
ary haplotype inference problem for different patients. This information can be
retrieved from public/controlled access databases (see, e.g., the cancer genome
atlas cancergenome.nih.gov).

4 Conclusion

In this work-in-progress paper, we briefly discussed the initial modeling of the
evolutionary haplotype inference problem; the problem is tied to investigation of
genome evolution in cancer (e.g., as result of pharmacological interventions). The
problem is combinatorial in nature, and suitable for modeling and analysis using
logic programming techniques. The project is in its infancy and will proceed
through the integration of the proposed haplotype inference with techniques
to reconstruct an associate evolutionary tree (with techniques borrowed from
phylogenetic analysis).
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Abstract. New experimental technologies in medicine and biology lead to the
availability of increasingly large data sets. Extracting information from those data
sets is a major challenge in current life sciences. Logical Analysis of Data (LAD)
is a method combining ideas from optimization and combinatorics in order to
explore large data sets by deriving logical patterns with certain properties. These
patterns can be seen as building blocks of implicit information. In the case of bio-
logical data, their examination can serve as a step towards a deeper understanding
of the underlying biology. We present a new approach to LAD using Answer Set
Programming and demonstrate how it can be used for biological applications.
Keywords: Answer Set Programming, Logical Analysis of Data, Patterns, Clas-
sification

1 Introduction

Logical Analysis of Data (LAD) is a method for data analysis using concepts from ma-
chine learning, combinatorics and Boolean functions. It was first described by Peter L.
Hammer, Yves Crama and Toshihide Ibaraki in 1988 [6] and further developed in the
following decades. LAD is a method for data analysis that aims for an understanding
of the central information carried by a data set. Our aim is to apply this approach to
biological data sets such as phosphorylation measurements of protein networks or gene
expression data. To make use of the method, we develop a tool box for LAD and im-
plement it by means of Answer Set Programming (ASP) [13], a form of declarative
programming based on the stable model semantics of logic programming.

The paper is organized as follows. Sect. 2 gives an introduction to the LAD method
and describes the main steps of data analysis, namely the generation of patterns and the
formation of a theory. The basic ASP methodology is described in Sect. 3. In Sect. 4,
we present our implementation, and Sect. 5 illustrates how it can be used for biological
applications. Sect. 6 concludes the paper and points out future directions.

2 Logical Analysis of Data

Logical Analysis of Data (LAD) [6] is a methodology for data analysis which combines
concepts from combinatorics and Boolean functions as well as from machine learning
and optimization. LAD finds applications in various research areas and attracted partic-
ular interest in the biomedical field [1].
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x0 x1 x2 x3 x4 x5
1 1 0 1 1 1
1 0 0 0 1 1
1 1 1 1 0 1
1 1 1 1 0 0
1 1 0 0 1 0
1 0 0 1 0 1
1 1 1 1 1 1
0 1 0 1 0 0
0 1 0 0 0 1
0 0 0 1 1 0

Table 1. Binary data set Ω partitioned into positive observations Ω+ and negative observations
Ω− by decision variable x0

2.1 Basic concepts and notations

Originally LAD was designed for binary data sets. LetΩ ⊆ {0, 1}n be a set of observa-
tions that are divided into two subsets by a decision variable x0, so that Ω = Ω+ ]Ω−

is the disjoint union of Ω+ and Ω−, called positive and negative observations, respec-
tively (see Tab. 1). Note that the decision variable could be any of the given variables,
each leading to a corresponding division.

Ω+

Ω−

A Boolean function of n ∈ N variables is a mapping f : {0, 1}n → {0, 1}. A
data set Ω as described above can be seen as a partially defined Boolean function
(pdBf), meaning that the function f is only given for Ω = Ω+ ] Ω−. Every func-
tion e : {0, 1}n → {0, 1} with e(x) = f(x) for all x ∈ Ω is called an extension of f . A
major goal of LAD is to find such an extension for a given pdBf.

2.2 Patterns

The key concept of LAD are patterns consisting of literals. For a Boolean variable x, we
denote its negation by x. Both x and x are literals. A term is a conjunction or product
of literals. The degree of a term is the number of literals in it. Every term t can be seen
as a Boolean function. For a vector v ∈ {0, 1}n, we denote by t(v) the binary value
that results from applying the Boolean function t to v, where t(v) is defined even if the
degree of t is less than n. We say that a term t covers a point v ∈ {0, 1}n if t(v) = 1.

Definition 1 (Positive (negative) pattern). Let f be a pdBf defined on a setΩ = Ω+]
Ω− of observations. A term t is called a positive (negative) pattern of f if it covers at
least one positive (negative) observation and no negative (positive) observation.

Note that every positive observation corresponds to a positive pattern, and every
negative observation to a negative pattern. Given the data set in Tab. 1 (partitioned
by x0), the observations x1x2x3x4x5 and x1x2x3x4 x5 thus provide a positive and a
negative pattern, respectively. Other (arbitrary) examples of positive patterns include
x1 x3, x2 and x4x5. For instance, x4x5 covers the positive observations x1x2x3x4x5,
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x1 x2 x3x4x5 and x1x2x3x4x5, while it evaluates to 0 for the remaining observations,
particularly considering the three which are negative.

Various types of patterns have been studied and their relative efficiency has been
analyzed [10]. A pattern can be preferred to another pattern based on different criteria.

Definition 2 (Simplicity preference). A pattern P1 is simplicity-wise preferred to a
pattern P2 if and only if the set of literals in P1 is contained in the set of literals in P2.

Definition 3 (Selectivity preference). A pattern P1 is selectivity-wise preferred to a
pattern P2 if and only if the set of literals in P2 is contained in the set of literals in P1.

Definition 4 (Evidential preference). A pattern P1 is evidentially preferred to a pat-
tern P2 if and only if the set of observations covered by P1 includes the observations
covered by P2.

Based on these preferences, various types of patterns can be described and analyzed.
A special type of patterns of particular interest are prime patterns [1].

Definition 5 (Prime patterns). A pattern with an inclusion-wise minimal set of literals
is called prime.

In other words, a pattern is prime if the removal of any of its literals results in a
term which is not a pattern anymore. For the data set in Tab. 1, the positive pattern x2
clearly is a prime pattern as it consists of one literal only. On the other hand, x3x4x5 is
not prime because x3 can be removed to obtain the smaller positive pattern x4x5. This
positive pattern x4x5 is prime given that neither x4 nor x5 is a positive pattern by itself.

2.3 Non-pure patterns - Homogeneity and prevalence

The development of patterns in LAD can be seen as the development of a simple lan-
guage which can easily be understood and communicated across various fields of ap-
plications. Talking about applications apart from purely mathematical problems, one
is always confronted with data sets which are not perfect in the sense of having one
unique explanation. There might be errors coming from experiments or discretization.
Taking this into account, parameters have been introduced to allow for some latitude
in the definition of patterns. Two of them which we will use in the sequel are called
homogeneity and prevalence [2].

Definition 6 (Homogeneity). The homogeneity Hom+(P ) of a positive pattern P is
given by

Hom+(P ) =
Covpos(P )

Cov(P )
, (1)

where Covpos(P ) is the number of positive observations covered by P and Cov(P ) is
the number of observations covered in total. The homogeneity Hom−(P ) of a negative
pattern P is defined analogously.
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Definition 7 (Prevalence). The prevalence Prev+(P ) of a positive pattern P is given
by

Prev+(P ) =
Covpos(P )

|Ω+| . (2)

The prevalence Prev−(P ) of a negative pattern P is defined analogously.

2.4 Theories and predictions

As mentioned before, a goal of LAD is to find a suitable extension e for a given pdBf f .
Such extensions are called theories in LAD and allow us to make predictions for unob-
served vectors.

In practice, there are several steps on the way to building a theory where decisions
have to be made and different concepts have been proposed (e.g. [4]). The first step is to
select a representative subset of patterns. On the one hand, this subset should be large
enough to capture all features of the data set. On the other hand, the subset should not
be too large, because it might become hard to understand and might lead to uncertain
classifications. To ensure that positive observations are assigned to be positive by the
theory and negative observations are assigned to be negative, the subset of patterns is
chosen such that every positive (negative) observation is covered by at least one positive
(negative) pattern. An observation is classified as positive (negative) if it is covered by
some of the positive (negative) patterns in the theory and by no negative (positive)
pattern.

To classify observations that are covered by positive and negative patterns, LAD
constructs a discriminant that assigns relative weights to the patterns. The discriminant
∆ for v ∈ {0, 1}n is given by

∆(v) =
∑

k

w+
k P

+
k (v) +

∑

l

w−
l P

−
l (v), (3)

where P+
1 , . . . , P

+
k , k ∈ N are the positive patterns with their assigned positive weights

w+
1 , . . . , w

+
k and P−

1 , . . . , P
−
l , l ∈ N are the negative patterns with negative weights

w−
1 , . . . , w

−
l . For classification, a threshold t has to be chosen. A vector v is classified

as positive if ∆(v) > t and negative if ∆(v) ≤ t.

3 Answer Set Programming

Answer Set Programming (ASP) [13] is a declarative programming paradigm. In con-
trast to imperative programming, the task for the user is to give a detailed description
of what the problem is rather than explaining how the problem should be solved. The
implementation of a problem in ASP consists thus of a concise representation of the
problem by logical rules, which are then instantiated by an ASP grounder and solved
by an ASP solver.

Various systems for grounding and solving were developed in the past years. We use
clingo, a combination of the grounder gringo and the solver clasp [8]. In the following,
we give a short introduction into the syntax and semantics of ASP.
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ASP is based on the stable model semantics of logic programming [13]. Search
problems are reduced to the computation of stable models which are found by ASP
solvers. Problems are formulated as logic programs which are finite sets of rules. A
rule r is of the form

A0 :- A1, . . . , Am, not Am+1, . . . , not An, (4)

where n ≥ m ≥ 0, each Ai, 0 ≤ i ≤ n, is an atom and ‘not’ stands for negation
by default. We call the left side of the rule the head and the right side the body. In the
following, we explain the input language used by ASP systems [8]. A rule, as in (4), is a
conditional constraint, meaning that the head must be true if the body is true. If n = 0,
rule (4) is called a fact and denoted by

A0.

Such a fact expresses that the atom A0 is always true. Omitting A0 in (4) amounts to
taking A0 to be false, and rule (4) represents an integrity constraint. Accordingly, the
resulting rule

:- A1, . . . , Am, not Am+1, . . . , not An.

expresses that a stable model must not satisfy the body. Integrity constraints are thus
often used to eliminate model candidates of a program.

To facilitate the use of ASP in practice, several extensions have been developed.
First of all, rules with variables are viewed as shorthands for the set of their ground
instances. Further language constructs include conditional literals and cardinality con-
straints [16]. The former are of the form A : B1, . . . , Bm, the latter can be written as
s {C1; . . . ;Cn} t, where A and Bi are possibly default negated literals and each Cj is
a conditional literal; s and t provide lower and upper bounds on the number of satis-
fied literals in a cardinality constraint. The practical value of both constructs becomes
apparent when used in conjunction with variables. For instance, a conditional literal
like a(X) : b(X) in a rule’s body expands to the conjunction of all instances of a(X)
for which the corresponding instance of b(X) holds. Similarly, 2 {a(X) : b(X)} 4
holds whenever between two and four instances of a(X) (subject to b(X)) are true.
In addition to cardinality constraints (using #count in full detail), the input language
of ASP provides further aggregates such as #min, #max and #sum. Similarly, ob-
jective functions minimizing the sum of weights wi of literals Bi are expressed as
#minimize {w1 : B1; . . . ;wn : Bn}. Specifically, we rely in the sequel on the input
language of the ASP system clingo [8], as detailed in the corresponding user’s guide [7].

The first step in the process of finding a solution to a problem is the grounding (e.g.
by gringo) of rules that include variables, meaning that those variables are replaced by
constants in ground instances. The grounded program is then passed to the solver (e.g.
clasp) which computes the stable models of the program.

Definition 8 (Reduct). The reduct PX of a program P relative to a set X of atoms is
defined by

PX = {head(r)← body+(r) | r ∈ P and body−(r) ∩X = ∅},
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1 i(1,1,1,1). i(1,1,2,0). i(1,1,3,1). i(1,1,4,1). i(1,1,5,1).
2 i(1,2,1,0). i(1,2,2,0). i(1,2,3,0). i(1,2,4,1). i(1,2,5,1).
3 i(1,3,1,1). i(1,3,2,1). i(1,3,3,1). i(1,3,4,0). i(1,3,5,1).
4 i(1,4,1,1). i(1,4,2,1). i(1,4,3,1). i(1,4,4,0). i(1,4,5,0).
5 i(1,5,1,1). i(1,5,2,0). i(1,5,3,0). i(1,5,4,1). i(1,5,5,0).
6 i(1,6,1,0). i(1,6,2,0). i(1,6,3,1). i(1,6,4,0). i(1,6,5,1).
7 i(1,7,1,1). i(1,7,2,1). i(1,7,3,1). i(1,7,4,1). i(1,7,5,1).
8 i(0,8,1,1). i(0,8,2,0). i(0,8,3,1). i(0,8,4,0). i(0,8,5,0).
9 i(0,9,1,1). i(0,9,2,0). i(0,9,3,0). i(0,9,4,0). i(0,9,5,1).

10 i(0,10,1,0).i(0,10,2,0).i(0,10,3,1).i(0,10,4,1).i(0,10,5,0).

Fig. 1. Input instance derived from the data set given in Tab. 1

where body+(r) is the set of all positive atoms of the body and body−(r) is the set of
all negative atoms of the body.

Definition 9 (Stable Model). A set X of atoms is a stable model of a program P if the
inclusion-wise minimal model of the reduct PX of P relative to X is equal to X .

4 Implementation of LAD in ASP

Over the past decades several implementations of LAD have been developed. These in-
clude a C++ tool implemented by Mayoraz [14], the LAD-WEKA software by Bonates
and Gomes [3] written in WEKA, which is a data mining software package of Java,
and ladoscope by Lemaire [12] in OCaml. Most of these tools are no longer main-
tained. Although some of them like ladoscope offer a wide range of functions, new
functionalities of LAD might be of interest, which are hard to add to the existing code.

Our goal is to develop an implementation of LAD which is as clear and succinct
as possible. This makes ASP a natural choice. The structure of the problem, i.e., enu-
merating patterns of Boolean expressions, is another important reason for choosing the
ASP framework. In this section, we describe our encoding of pattern generation and
theory formation. For alternative approaches using Mixed-Integer Linear Programming
(MILP), we refer e.g. to [15, 9].

An instance of our problem is a binary data set with the properties defined in Sect. 2
(see Tab. 1). It is parsed into the format given in Fig. 1. Each entry of the table is given
by a single predicate i(sign,name,variable,value), where sign is the sign
of the observation (1 for positive and 0 for negative observation), name is the identifier
of the observation and value is the binary value of a variable.

4.1 Pattern generation

The basic encoding for pattern generation is given in Fig. 2. Before running the program
the user has to define the constants degree, sign, homogeneity and prevalence.
A stable model provides a pattern of given degree and sign with homogeneity and preva-
lence greater than or equal to the chosen constants.
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1 % GENERATE
2 degree { pat(S,B) : i(sign,_,S,B) } degree.
3

4 % DEFINE
5 not_covered(W,X) :- i(W,X,_,_), pat(S,B), not i(W,X,S,B).
6 covered(W,X) :- not not_covered(W,X), i(W,X,_,_).
7

8 % TEST
9 :- pat(S,B), pat(S,Q), Q<B.

10 :- #sum{ homogeneity-100,X : covered(W,X), W=sign;
11 homogeneity,X : covered(W,X), W!=sign } > 0.
12 :- nbrrightobs(C),
13 #sum{ 100,X : covered(W,X), W=sign } < prevalence*C.

Fig. 2. Basic encoding for pattern generation

The program follows the general methodology of ASP which means that it is orga-
nized in three parts, called generate, define and test. We want a stable model to contain
a pattern of a given degree. Any stable model thus includes degree many atoms over
literals pat(S,B), where S is the variable name and B its Boolean value. The first
rule given in line 2 is a choice rule generating solution candidates. We know from the
definition of a pattern that it must cover at least one observation of its sign. Because of
this constraint, we choose literals from the observations of the same sign.

At this point, it is not certain that the set of literals belongs to an actual pattern. It
could be any set of single literals included in different observations of the right sign, but
such that the whole set of literals is not covering a single observation. The define part is
used to specify predicates narrowing stable models down. We want to count how many
observations (divided by their sign) are covered by a set of atoms pat(S,B). To do
this, we introduce in line 6 the predicate covered(W,X) which is true if observation
X having sign W is covered by the generated literals. For defining this predicate, we use
an auxiliary predicate not_covered(W,X) in line 5 which is true for an observation
W if one of the literals pat(S,B) does not appear in W. Then covered(W,X) is true
if not_covered(W,X) is not true.

In the next part, indicated by test, we can make use of the defined predicate and
test whether the choice of literals fulfills the definition of a pattern. Line 9 is a general
test forbidding that a pattern contains the same variable with different assignments. In
line 10 and 11, we test whether the set of literals fulfills the homogeneity condition (1).
In addition, line 12 and 13 make sure that the prevalence condition (2) is met by a
generated pattern. The unary predicate nbrrightobs is calculated in advance and
counts the number of observations having the same sign as the pattern wanted.

4.2 Prime patterns

By adding only one more test to the encoding presented above, we can focus the patterns
to generate on those which are prime. The encoding in Fig. 3 is based on the definition
of prime patterns, namely that a pattern is prime if and only if the deletion of any of
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1 % DEFINE
2 del_covered(W,X,S) :- i(W,X,S,_),
3 #count{ T : pat(T,C), i(W,X,T,C), T != S } = degree-1.
4

5 % TEST
6 :- pat(S,B),
7 #sum{ homogeneity-100,X : del_covered(W,X,S), W = sign;
8 homogeneity,X : del_covered(W,X,S), W != sign } <= 0.

Fig. 3. Additional lines to the encoding in Fig. 2 for the generation of prime patterns

its literals results in a term which is not a pattern. We determine the coverage for all
terms obtained by the deletion of a single literal (lines 2-3) and test whether the term
satisfies the homogeneity condition (lines 6-8). Note that it is not necessary to test the
prevalence condition as a term obtained by leaving out one of the literals of a pattern
cannot cover less observations than the original pattern.

4.3 Theory formation

The formation of a theory is based on the selection of a subset of patterns fulfilling
certain properties. To this end, a set of (prime) patterns of interest is given by the pred-
icate pat(sign,name,variable,value), specifying the literals of candidate
patterns similar to those of observations. The program in Fig. 4 encodes the task of
choosing some of the patterns such that every positive observation is covered by at least
pos many positive patterns and every negative observation is covered by at least neg
many negative patterns, where pos and neg are user-defined constants. In the basic
case, both constants are set to 1, while a greater value results in higher coverage of
positive or negative observations, respectively. The #minimize statement in line 15
is used to choose a minimum-cardinality subset of patterns that covers the whole set of
observations according to the specified constants.

Once a minimal pattern set has been found, it can be used to form a theory by
assigning appropriate weights to each of the patterns. The resulting discriminant can
then be applied to make predictions for binary vectors that do not belong to the given
set of observations.

5 Biomedical Application

One of the main advantages of the analysis with LAD over other well-known machine
learning methods, such as Support Vector Machines (see [17]), is the generation of
patterns. They extract the important information from the given data and are easier to
interpret than, e.g., hyperplanes.

The method as well as our implementation is independent from the context of the
data and thus possible applications are widely spread. Here we give one example of
how our implementation can be used in the biomedical field.
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1 % GENERATE
2 { minimalcover(W,M) } :- pat(W,M,_,_).
3

4 % DEFINE
5 not_all_entries_cov(W,M,X) :- i(W,X,_,_),
6 pat(W,M,S,B), not i(W,X,S,B).
7 all_entries_covered(W,M,X) :- not not_all_entries_cov(W,M,X),
8 minimalcover(W,M), i(W,X,_,_).
9

10 % TEST
11 :- i(1,X,_,_), #count{ M : all_entries_covered(1,M,X) } < pos.
12 :- i(0,X,_,_), #count{ M : all_entries_covered(0,M,X) } < neg.
13

14 % OPTIMIZE
15 #minimize{ 1,W,M : minimalcover(W,M) }.

Fig. 4. Encoding for finding a minimal pattern set that can be used for theory formation

5.1 Identifying protein interactions from phosphorylation measurements

Assume we are given a data set consisting of phosphorylation measurements of proteins
in a cellular signaling network, as in Tab. 2. This example is taken from [11] and shows
an extract of the perturbation measurements of the EGFR-signaling pathway after dis-
cretization. In Fig. 5 an idea of the known underlying protein network is given.

The phosphorylation of MEK, AKT, ERK and S6K was measured under different
combinations of a stimulus at one of the growth factors TGFα and IGF, and inhibitions
at MEK or PI3K. In Tab. 2 the active stimulus is represented by a 1 entry and the
absence of a stimulus is represented by a 0 entry. The same holds for the presence of an
inhibition (1 entry) or its absence (0 entry).

We divided the table into positive and negative observations by the protein S6K.
Note here that this could be any of the observed proteins. We now search the data set
for prime patterns which explain the outcome of the phosphorylation of the downstream
protein S6K. For simplicity, we restrict ourselves to patterns with perfect homogeneity
and no constraint on their prevalence.

Positive prime patterns We first investigate the positive prime patterns. Recall that
prime patterns are patterns such that the removal of any literal results in a non-pattern.
We divide our analysis into patterns including a stimulus at TGFα and those including
a stimulus at IGF.

The search for positive prime patterns including TGFα leads to a single solution,
namely pat(1,1), a degree-one prime pattern. The active stimulus at TGFα itself
suggests that a stimulus at TGFα can lead to a phosphorylation of S6K independently
from the use of additional inhibitions.

We then look for positive prime patterns including a stimulus at IGF. In total, we
find four different prime patterns having this property, as reflected in the output of the
ASP system:
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TGFα IGF MEK inh PI3K inh MEK AKT ERK S6K
1 0 0 0 0 0 0 1
0 1 0 0 0 1 1 1
1 0 1 0 1 1 0 1
0 1 1 0 1 1 0 1
1 0 0 1 1 0 1 1
0 0 1 0 1 0 0 0
0 0 0 1 0 0 1 0
0 1 0 1 1 1 1 0

Table 2. Discretized phosphorylation measurements in the EGFR pathway [11]

Answer: 1
pat(2,1) pat(4,0)
Answer: 2
pat(2,1) pat(5,0)
Answer: 3
pat(2,1) pat(3,1)
Answer: 4
pat(2,1) pat(7,0)

We can nicely interpret those stable models. The fact that we do not find a degree-
one pattern is due to the structure of the network. The stimulation of IGF does not
guarantee that S6K is phosphorylated as the downstream can be cut by the inhibition of
the pathway going through PI3K. Answer 2 illustrates the observation that we can have
a positive readout at S6K while stimulating IGF without seeing a phosphorylation of
MEK. Answer 4 is a similar observation saying that we do not have a phosphorylation
of ERK when we see a phosphorylation of S6K under the given stimulus. Those two
stable models indicate that MEK and ERK might not lie in the pathway from IGF to
S6K. The same interpretation can be made regarding answer 3, which says that an
inhibition at MEK does not prevent a phosphorylation of S6K. Answer 1 is the only
stable model with a higher prevalence of 0.4, where the additional prohibition of the
inhibition at PI3K represents the path from IGF along PI3K.

Negative prime patterns In the next step, we analyze the negative prime patterns of
the data set in the same manner. As we never observe a negative readout at S6K when
the stimulus at TGFα is active, there is no negative pattern including TGFα. There are
also no degree-one negative prime patterns including IGF and only a single degree-two
prime pattern which consists of pat(2,1) and pat(4,1), standing for the active
stimulus at IGF and the inhibition at PI3K.

6 Conclusion and Future Directions

We presented a new approach to Logical Analysis of Data using Answer Set Program-
ming. The rich and simple declarative modeling language of ASP allows for solving
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Fig. 5. The EGFR-signaling pathway [11]

hard search problems by the reduction to the computation of stable models. We made
use of this advantage for the problem of pattern generation according to LAD. Be-
cause of the simple description of the problem, it is easy to communicate the solutions
across research fields and to give an intuitive interpretation. Utilization of the ASP
solver clingo [8] makes it possible to apply the program to large data sets and still
obtain results in a reasonable amount of time.

In Sect. 5 we described one possible application in the biomedical field. We ex-
plained the application to discretized perturbation measurements, where we can see that
prime patterns offer an opportunity for the deeper understanding of information carried
in biological data sets. In fact, Logical Analysis of Data has been a powerful tool for
data analysis especially in the biomedical field within the last decades. We believe that
using ASP for LAD and possible extensions may greatly enhance its applicability.
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Abstract Aiming at assessing differentiation processes in complex dy-
namical systems, this paper focuses on the identification of states and
transitions that are crucial for preserving or pre-empting the reachabil-
ity of a given behaviour. In the context of non-deterministic automata
networks, we propose a static identification of so-called bifurcations, i.e.,
transitions after which a given goal is no longer reachable. Such trans-
itions are naturally good candidates for controlling the occurrence of
the goal, notably by modulating their propensity. Our method combines
Answer-Set Programming with static analysis of reachability properties
to provide an under-approximation of all the existing bifurcations. We
illustrate our discrete bifurcation analysis on several models of biological
systems, for which we identify transitions which impact the reachability
of given long-term behaviour. In particular, we apply our implementation
on a regulatory network among hundreds of biological species, supporting
the scalability of our approach.

1 Introduction

The emerging complexity of dynamics of biological networks, and in particu-
lar of signalling and gene regulatory networks, is mainly driven by the inter-
actions between the species, and the numerous feedback circuits it generates
[43,31,35,30]. One of the prominent and fascinating features of cells is their
capability to differentiate: starting from a multi-potent state (for instance, a
stem cell), cellular processes progressively confine the cell dynamics in a narrow
state space, an attractor. Deciphering those decisional processes is a tremendous
challenge, with important applications in cell reprogramming and regenerative
medicine.

Discrete models of network dynamics, such as Boolean and multi-valued
networks [42,4], have been designed with such an ambition. These frameworks
model nodes of the network by variables with small discrete domains, typically
§ Corresponding authors: carito.guziolowski@irccyn.ec-nantes.fr, loic.pauleve@lri.fr
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Boolean. Their value changes over time according to the state of their parent
nodes. Exploring the dynamical properties of those computational models, such
as reachability (the ability to evolve to a particular state) or attractors (long-run
behaviors), allows to understand part of important cellular processes [36,1,5].

In classical control theory the reachability and safety control of discrete sys-
tems is an important topic which is both critical and challenging. Safety veri-
fication or reachability analysis aims at showing that starting from some initial
conditions a system cannot evolve towards to some unsafe region in the state
space. In a stochastic setting the different trajectories originating from one initial
state have a different likelihood and one can then evaluate what is the probabil-
ity that the system reaches the assigned set of states starting from a given initial
distribution of the set of initial states. In safety problems, where the evolution
of the system can be influenced by some control input, one should select it ap-
propriately so as to minimize the probability that the state of the system will
move to an unsafe set of states. In this work we address the computation of sets
of states from which the system can evolve into an undesired set of states given
a model represented as a discrete finite-state of interacting components, such as
an Automata Network. This topic is in particular highly relevant for systems
biology and systems medicine, since it can suggest intervention sites or thera-
peutic targets in Biological Regulatory Networks (BRNs) that may counteract
pathological behavior.

Contributions. In this work we introduce the notion of bifurcation in Auto-
mata Networks (ANs) and provide a scalable method for their identification
relying on declarative programming with Answer-Set Programming (ASP) [3].
A bifurcation corresponds to a transition after which the system looses the cap-
ability to reach a given goal state. Identifying bifurcations extensively relies on
the reachability problem, which is PSPACE-complete in ANs and related frame-
works [8]. In order to obtain an approach tractable on large biological networks,
we show how to combine techniques from static analysis of ANs dynamics, from
concurrency, and from constraint programming in order to relax efficiently the
bifurcation problem. Our method identifies correct bifurcations only (no false
positives), but, due to the embedded approximations, is incomplete (false negat-
ives may exist). To our knowledge, this is the first integrated method to extract
such decisive transitions from models of interaction networks.

Related work. Many works have been devoted to the control theory and sys-
tem verification; in particular in reachability analysis and safety control for sys-
tem verification. We limit here to those developed for discrete systems.

In the case of deterministic systems, a large number of methods have been
proposed to aid in the verification of safety-critical computer software and hard-
ware. Due to the inherently discrete nature of these systems, early attempts in
this area have concentrated on purely discrete systems [6]. A verification pro-
cedure has been proposed for discrete event dynamic systems in [25]. They use
a finite state machine representation to model discrete event dynamic systems,
temporal logic statements (to represent specifications imposed on their opera-
tions) and a model-checking verification method introduced by Clarke et al. [10]
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to test if the given relationship between the model and the specifications holds.
The same method has been applied to the verification of programmable logic
controllers [27] and control procedures for batch plants [26].

For systems with complex behavior, the development of modeling frameworks
and verification methods has been done among others by [20]. Because of the sig-
nificant increase of the state space, many approximation methods were proposed
for reachability computation and can be grouped in two main approaches. The
first one is based on an approximate simulation relation to obtain an abstrac-
tion of the original system [19]. In the second approach, static analysis methods
inspired from Cousot et al. [11] analyze the system dynamic and cope with the
state-space explosion. In this group we can cite the development of static analysis
of reachability properties based on an over- and under-approximation using the
Process Hitting [30] and extended for the ANs. Besides methods that approx-
imated the computation of reachability, authors in [33,34] proposed methods for
safety verification that do not require the computation of reachable sets, but
instead relied on the notion of barrier certificates [32].

A key notion underlying network behavior is that state-space is organized
into a number of basins of attraction, connecting states according to their trans-
itions, and summing up the network’s global dynamics. For systems having many
attractors, some of them may correspond to desired behaviors, while others, to
unsafe regions. In the global network dynamic a system can move towards an
unsafe region. Therefore, beyond ensuring the properties reachability and safety
verification, proposing strategies to interfere on a system and force a desired
behavior is important. Previous works introduced the concept of Minimal Inter-
vention Sets (MISs) [23] for biological networks and later generalized in [37] for
addressing Boolean models of signaling networks. This concept allowed one to
choose an intervention strategy to provoke a desired/observed response in cer-
tain target nodes. Compared to the approach present of this paper, they do not
take into account the transient dynamics of the system, which limits consider-
ably the domain of predictions. [28,2] proposed approaches based on cut sets to
identify nodes/reactions whose perturbation would prevent the occurrence of a
given state/reaction. Whereas those prediction can help to control the reachab-
ility of an attractor, they do not allow to capture the differentiations processes,
as do bifurcations.

Outline Section 2 introduces the Automata Network formalisms on which our
method relies. The notion of bifurcation in ANs is introduced in section 3. In
section 4, we give a brief overview of methods for checking reachability properties
which is a core task for the characterization of bifurcations. In section 5, we
combine static analysis, dynamics unfolding, and ASP, aiming at providing a
scalable identification of the bifurcation transitions for a given goal. In section 6,
we evaluate a prototype implementation on several large biological models in
order to support the scalability of our approach. Section 7 concludes the paper.
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2 Automata Networks

We consider an Automata Network (AN) as a finite set of finite-state machines
having transitions between their local states conditioned by the state of other
automata in the network. An AN is defined by a triple (Σ,S, T ) (definition 1)
where Σ is the set of automata identifiers; S associates to each automaton a
finite set of local states: if a ∈ Σ, S(a) refers to the set of local states of a;
and T associates to each automaton the list of its local transitions. Each local
state is written of the form ai, where a ∈ Σ is the automaton in which the state
belongs to, and i is a unique identifier; therefore given ai, aj ∈ S(a), ai = aj if
and only if ai and aj refer to the same local state of the automaton a. For each
automaton a ∈ Σ, T (a) refers to the set of transitions of the form t = ai

`−→ aj
with ai, aj ∈ S(a), ai 6= aj , and ` the enabling condition of t, formed by a
(possibly empty) set of local states of automata different than a and containing
at most one local state of each automaton.

Definition 1 (Automata Network (Σ,S, T )). An Automata Network (AN)
is defined by a tuple (Σ,S, T ) where

– Σ is the finite set of automata identifiers;
– For each a ∈ Σ, S(a) = {ai, . . . , aj} is the finite set of local states of auto-

maton a; S ∆
=

∏
a∈Σ S(a) is the finite set of global states;

LS
∆
=

⋃
a∈Σ S(a) denotes the set of all the local states.

– T = {a 7→ Ta | a ∈ Σ}, where ∀a ∈ Σ,Ta ⊆ S(a) × 2LS\S(a) × S(a) with
(ai, `, aj) ∈ Ta ⇒ ai 6= aj and ∀b ∈ Σ, |` ∩ S(b)| ≤ 1, is the mapping from
automata to their finite set of local transitions.

We write ai
`−→ aj ∈ T ∆⇔ (ai, `, aj) ∈ T (a).

At any time, each automaton is in one and only one local state, forming the
global state of the network. Assuming an arbitrary ordering between automata
identifiers, the set of global states of the network is referred to as S as a shortcut
for

∏
a∈Σ S(a). Given a global state s ∈ S, s(a) is the local state of automaton

a in s, i.e., the a-th coordinate of s.
A local transition t = ai

`−→ aj ∈ T is applicable in a global state s ∈ S when
ai and all the local states in ` are in s. The application of the local transition,
noted s · t, replaces the local state of a with aj (definition 2). It results in
a (global) transition s

t−→ s′ where s′ = s · t. In this paper, we consider the
asynchronous semantics of ANs: only one local transition can be applied at a
time, meaning only one automaton changes its local state by the transitions
between two global states. In this semantics, different local transitions may be
applicable to a same state, which may potentially lead to very different dynamics.
The choice of the transition is non-deterministic. A global state s′ is reachable
from s, noted s→∗ s′, if and only if there exists a (possibly empty) sequence of
transitions leading from s to s′.
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Definition 2 (Transition, reachabilility). Given a state s ∈ S and a local
transition t = ai

`−→ aj ∈ T such that s(a) = ai and ∀bk ∈ `, s(b) = bj, s · t is the
state s where ai has been replaced by aj:

∀b ∈ Σ, (s · t)(b) =
{
aj if b = a

s(b) otherwise

We then write s t−→ s′ where s′ = s·t. The reachability binary relation→∗ ⊆ S×S
satisfies

s→∗ s′ ∆⇔ s = s′ ∨ ∃t ∈ T : s
t−→ s′′ ∧ s′′ →∗ s′

Figure 1 represents an AN (Σ,S, T ) of 3 automata (Σ = {a, b, c}), with
S(a) = {a0, a1, a2}, S(b) = {b0, b1}, S(c) = {c0, c1, c2}, and 8 local transitions
defined as follows:

T (a) = {t1 = a1
∅−→ a0, t2 = a0

b0−→ a1, t3 = a0
b0,c0−−−→ a2}

T (b) = {t4 = b0
∅−→ b1, t5 = b1

a0−→ b0}
T (c) = {t6 = c0

a1−→ c1, t7 = c1
b1−→ c0, t8 = c1

b0−→ c2}

From the given initial state s0 = 〈a0, b0, c0〉, 3 transitions can be applied: t2, t3,
and t4; the application of the latter results in s0 · t4 = 〈a0, b1, c0〉 (automaton b
is now in state b1).

3 Bifurcations

From an initial state s0 and a goal local state, we call a bifurcation a transition
from a state where the goal is reachable to a state where the goal is not reachable,
i.e., there exists no sequence of transition that lead to a state containing the goal
local state.

Let us consider the AN of figure 1, with s0 = 〈a0, b0, c0〉 and the goal a2.
Figure 2 shows all the possible transitions from s0. The states with a gray back-
ground are connected to a state containing a2 (in thick/blue). The transitions
in thick/red are bifurcations: once in a white state, there exist no sequence of
transitions leading to a2. In other words, bifurcations are the transitions from a
gray state to a white state. In this example, t8 is the (unique) local transitions
responsible for bifurcations from s0 to a2.

In this paper, given an AN (Σ,S, T ), we are interested in identifying the local
transitions tb ∈ T that trigger a bifurcation from a state reached from s0 ∈ S for
a given goal, describing a set of states Sg ⊆ S. We call sb a global state where
a bifurcation occurs, and su the global state after the bifurcation: su = sb · tb.
The goal is reachable from sb but not from su. This is illustrated by figure 3.
Note that, as illustrated, sb is not inevitably reached: we allow the existence of
alternative paths of transitions to the goal.
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b0

b0, c0

a1

b0

b1a0

Figure 1. An example of Automata Network (AN).‘ Automata are represented by
labelled boxes, and local states by circles where ticks are their identifier within the
automaton – for instance, the local state a0 is the circle ticked 0 in the box a. A
transition is a directed edge between two local states within the same automaton. It
can be labelled with a set of local states of other automata. Grayed local states stand
for the global state 〈a0, b0, c0〉.

〈a2, b1, c0〉

〈a2, b0, c0〉 〈a1, b0, c0〉

〈a0, b0, c1〉

s0 = 〈a0, b0, c0〉

〈a1, b1, c0〉

〈a0, b1, c0〉

〈a1, b1, c1〉

〈a0, b1, c1〉

〈a1, b0, c1〉

〈a1, b0, c2〉

〈a0, b0, c2〉

〈a1, b1, c2〉

〈a0, b1, c2〉

t8

t8

Figure 2. Transition graph of the AN in figure 1 from the initial state s0 = 〈a0, b0, c0〉.
The goal a2 is in thick/blue; the states connected to the goal are in gray; the bifurcations
to the goal in thick/red, labelled with the local transitions in the AN definition.
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s0

sb

Sg

su
tb

Figure 3. General illustration of a bifurcation. s0 is the initial state, Sg is a set of
states in which the goal local state is present. The dashed arrows represent a sequence
(possibly empty) of transitions. The plain red arrow is a bifurcation from a global state
sb to su, and tb is the associated local transition.

Definition 3 formalizes the notion of bifurcation, where the goal is specified by
a local state g1 (hence Sg = {s ∈ S | s(g) = 1}). Note that this goal specification
does not loose generality, as one can build an automaton g with local states g0
and g1, and with a local transitions from g0 to g1 conditioned by each desired
goal state.

Definition 3 (Bifurcation). Given an AN (Σ,S, T ), a global state s0 ∈ S and
a goal local state g1 with g ∈ Σ and g1 ∈ S(g), a bifurcation is a transition
sb

tb−→ su of the AN with sb, su ∈ S and tb ∈ T , such that s0 →∗ sb and ∀s′ ∈ S
where su →∗ s′, s′(g) 6= g1.

4 Reachability and formal approximations

The identification of a bifurcation as presented in the previous section can be
decomposed in three steps: we want to find sb ∈ S and tb ∈ T such that (1) sb is
reachable from s0 (s0 →∗ sb); (2) g1 is reachable from sb (∃sg ∈ S : sg(g) = g1 ∧
sb →∗ sg); (2) g1 is not reachable from su = sb ·tb (∀s ∈ S, su →∗ s⇒ s(g) 6= g1).
Therefore, alongside the enumeration of candidate sb and tb, reachability is at
the core of our bifurcation identification.

In this section, we give a brief overview of the basics of reachability checking,
stressing the methods we use in this paper.

4.1 State graph and partial order reductions

Given two states s, s′ of an AN (or an equivalent Petri net), verifying s→∗ s′ is
a PSPACE-complete problem [8].

The common approach for reachability checking is to build the (finite) set
of all the states reachable from s until finding s′, by exploring all the possible
transitions. However, such a set can be rapidly intractable with large models.
Techniques relying on symbolic representations, notably using Binary Decision
Diagrams (BDDs) and variants [21] can improve the scalability of this approach
by several orders of magnitude [9].
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In many cases, numerous transitions modelled by ANs are concurrent : their
application is independent from each other. For instance, if t1 and t2 are concur-
rent in a state s, one can apply indifferently s · t1 · t2 and s · t2 · t1. Such features
can be exploited to provide very compact representations of the reachable states
in a concurrent system, taking into account the partial order of transition applic-
ations. Unfoldings, and more precisely their complete finite prefixes [13], allow
to compute efficiently such compact representations.

In this paper, part of our method uses complete finite prefixes of unfoldings
to compute the states that are reachable from the fixed initial state s0. Indeed,
because biological networks are typically very large, but also very sparse (each
node/automaton interacts with a few others, compared to the size of the net-
work), they exhibit a high degree of concurrency for their transitions, making
unfolding approaches very effective.

4.2 Formal approximations

When facing a large AN, it may turn out that the reachable state space is
too large for the aforementioned exact verification of reachability. Moreover,
the complexity of the reachability problem can be prohibitive when numerous
verifications have to be done, for instance when enumerating candidate initial
states (such as sb in our case for checking goal reachability from it).

In this paper, we rely on the reachability approximations for ANs introduced
in [29,15]. We will use both over-approximations (OA) and under-approximations
(UA) of the reachability problem: s→∗ s′ is true only if OA(s→∗ s′) is true and
s→∗ s′ is true if UA(s→∗ s′) is true; but the converses do not hold in general:

UA(s→∗ s′)⇒ s→∗ s′ ⇒ OA(s→∗ s′)

The approximations rely on static analysis by abstract interpretation of
AN dynamics. We give here the basic explanations for the over- and under-
approximation. The analysis rely on the decomposition of the systems dynamics
in automata, in order to derive necessary or sufficient conditions for a reachab-
ility property of the form s→∗ s′.

The core objects are the local paths within two local states ai, aj of a same
automaton a. We call ai aj an objective and define local-paths(ai aj) the
set of the acyclic paths of local transitions between ai and aj . Definition 4 gives
the formalization of local-paths where we use the following notations: for a local
transition t = ai

`−→ aj ∈ T , orig(t)
∆
= ai, dest(t)

∆
= aj , enab(t)

∆
= `; ε denotes the

empty sequence, and |η| is the length of sequence η.

Definition 4 (local-paths). Given an objective ai aj,

– if i = j, local-paths(ai ai)
∆
= {ε};

– if i 6= j, a sequence η of transitions in T (a) is in local-paths(ai aj) if and
only if orig(η1) = ai, dest(η|η|) = aj, ∀n, 1 ≤ n < |η|, dest(ηn) = orig(ηn+1),
and ∀n,m, |η| ≥ n > m ≥ 1, dest(ηn) 6= orig(ηm).
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We write t ∈ η ∆⇔ ∃n, 1 ≤ n ≤ |η| : ηn = t. Given a local path η, η̃ denotes
the union of the conditions of all the local transitions composing it:

η̃
∆
=

⋃|η|
n=1 enab(ηn)

In the AN of figure 1, local-paths(a0  a2) = {a0 b0,c0−−−→ a2}; local-paths(c2  
c1) = ∅.

Focusing on the reachability of a single local state g1 from a state s where
s(g) = 0, the analyzes essentially start with the local paths in local-paths(g0 
g1): if g1 is reachable, then at least of the local path η has to be realizable,
meaning that all the local states of its conditions (η̃) should be reachable. This
lead to a recursive reasoning by repeating the procedure with the objectives from
s to the local states in η̃.

The dependence relationships between the local paths of the different auto-
mata can be represented as a graph, where the nodes are all the local states, all
the possible objectives, and all their local paths. Such a graph is called a Local
Causality Graph (LCG), and abstracts all the executions of the AN.

From a complexity point of view, local paths are computed for each pair of
local states within every automata; the length of a local path being at most the
number of local states within the automaton, the number of local paths is at
most polynomial in the number of local transitions and exponential in the size
of the single automaton. In practice, the automata are small, typically between
2 and 4 states for biological models. Therefore, LCGs turn out to be very small
compared to the reachable state space of biological networks. They have been
successfully applied for analyzing dynamics of ANs with hundreds or thousands
of automata, which were intractable with standard model-checking approaches
[29,28].

The over-approximation and under-approximation reduce to finding sub-
graphs of LCGs that satisfy some particular structural properties, which have
been proven to be necessary or sufficient for the reachability property, respect-
ively. Whereas the over-approximation can be verified in a time linear with the
LCG [29], the under-approximation we consider in this paper requires to enu-
merate over many possible sub-LCGs, but checking if a sub-LCG satisfies the
sufficient condition is linear in its size.

Note that further refinements of local-paths have been considered for the
mentioned approximations, but for the sake of simplicity, we stick to this coarse-
grained presentation in the scope of this paper.

Appendix A gives examples of LCGs satisfying necessary or sufficient condi-
tions for reachability properties in the AN of figure 1.

5 Identification of bifurcations using ASP

Among the states reachable from s0, we want to find a state sb from which (1)
the goal is reachable and (2) there exists a transition to a state from which the
goal is not reachable. Putting aside the complexity of reachabilities checking, the
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enumeration of candidate states sb is a clear bottleneck for the identification of
bifurcations in an AN.

Our approach combines the formal approximations and (optionally) unfold-
ings introduced in the previous section with a constraint programming approach
to efficiently identify bifurcations. As discussed in the previous section, checking
the over-/under-approximations from candidate states and sub-LCGs is easy.
For the case of unfolding, checking if a state s belongs to the state space repres-
ented by a complete finite prefix is NP-complete [14]. Therefore, a declarative
approach such as Answer-Set Programming (ASP) [3] is very well suited for spe-
cifying admissible sb and tb, and obtaining efficient enumerations of solutions by
a solver.

We first present the general scheme of our method, and then given details on
its implementation with ASP.

5.1 General scheme

A sound and complete characterization of the local transitions tb ∈ T triggering a
bifurcation from state s0 to the goal g1 would be the following: tb is a bifurcation
transition if and only if there exists a state sb ∈ S such that

(C1) su 6→∗ g1 (C2) sb →∗ g1 (C3) s0 →∗ sb

where su = sb · tb, s 6→∗ g1 ∆⇔ ∀s′ ∈ S, s →∗ s′ ⇒ s′(g) 6= g1 and s →∗ g1 ∆⇔
∃sg ∈ S : sg(g) = g1 ∧ s→∗ sg.

However, in an enumeration scheme for sb candidates, checking reachability
and non-reachability of the goal from each sb candidate ((C1) and (C2)) is
prohibitive. Instead, we relax the above constraints as follows:

(I1#) ¬OA(su →∗ g1) (I2#) UA(sb →∗ g1)
(I3) sb ∈ unf-prefix(s0)

(I3#) UA(s0 →∗ sb)

where unf-prefix(s0) is the set of all reachable states from s0 represented as the
prefix of the unfolding of the AN which has to be pre-computed (section 4.1).
Either (I3) or (I3#) can be used, at discretion. From OA and UA properties
(section 4.2), we directly obtain:

(I1#)⇒ (C1) (I2#)⇒ (C2)
(I3)⇔ (C3)

(I3#)⇒ (C3)

Therefore, our characterization is sound (no false positive) but incomplete: some
tb might be missed (false negatives). Using (I3) instead of (I3#) potentially
reduces the false negatives, at the condition that the prefix of the unfolding is
tractable. When facing a model too large for the unfolding approach, we should
rely on (I3#) which is much more scalable but may lead to more false negatives.

Relying on the unfolding from sb (unf-prefix(sb)) is not considered here, as it
would require to compute a prefix from each sb candidate, whereas unf-prefix(s0)
is computed only once before the bifurcation identification.
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5.2 ASP syntax and semantics

We give a very brief overview of ASP syntax and semantics that we use in the
next section. Please refer to [18,3,16] for an in-depth introduction to ASP.

An ASP program consists in a set of predicates, and logic rules of the form:
1 a0 ← a1, . . ., an, not an+1, . . ., not an+k.

where ai are atoms, terms or predicates in first order logic.
Essentially, such a logical rules states that when all a1, . . . , an are true and all

an+1, . . . , an+k are false, then a0 has to be true as well. a0 can be ⊥ (or simply
omitted): in such a case, the rule is satisfied only if the right hand side of the
rule is false (at least one of a1, . . . , an is false or at least one of an+1, . . . , an+k
is true). A solution consists in a set of true atoms/terms/predicates with which
all the logical rules are satisfied.

ASP allows to use variables (starting with an uppercase) instead of term-
s/predicates: these pattern declarations will be expanded to the corresponding
propositional logic rules prior to the solving. For instance, the following ASP
program has as unique (minimal) solution b(1) b(2) c(1) c(2).

2 c(X) ← b(X).
3 b(1).
4 b(2).

In the following, we also use the notation n { a(X) : b(X) } m which is true
when at least n and at most m a(X) are true where X ranges over the true b(X).

5.3 ASP implementation

We present here the main rules for implementing the identification of bifurcation
transitions with ASP. A significant part of ASP declarations used by (I1#),
(I2#), (I3), and (I3#) are generated from the prior computation of local-paths
and, in the case of (I3), of the prefix of the unfolding. Applied on figure 1, our
implementation correctly uncovers t8 as a bifurcation for a2.

Declaration of local states, transitions, and states Every local state
ai ∈ S(a) of each automaton a ∈ Σ are declared with the predicate ls(a,i).
We declare the local transitions of the AN and their associated conditions by
the predicates tr(id,a,i,j) and trcond(id,b,k), which correspond to the local
transition ai

{bk}∪`−−−−→ aj ∈ T . States are declared with the predicate s(ID,A,I)
where ID is the state identifier, and A, I, the automaton and local state present
in that state. Finally, the goal g1 is declared with goal(g,1).

For instance, the following instructions declare the automaton a of figure 1
with its local transitions, the state s0 = 〈a0, b0, c0〉, and the goal being a2:

1 ls(a,0). ls(a,1). ls(a,2).
2 tr(1,a,1,0).
3 tr(2,a,0,1). trcond(2,b,0).
4 tr(3,a,0,2). trcond(3,b,0). trcond(3,c,0).
5 s(0,a,0). s(0,b,0). s(0,c,0). goal(a,2).
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Declaration of sb, tb, and su The bifurcation transition tb, declared as btr(b),
is selected among the declared transitions identifiers (line 6). If ai

`−→ aj is the
selected transition, the global state su (recall that su = sb · tb) should satisfy
su(a) = aj (line 7) and, ∀bk ∈ `, su(b) = bk (line 8). The state sb should then
match su, except for the automaton a, as sb(a) = ai (lines 9 and 10).

6 1 { btr(ID) : tr(ID,_,_,_) } 1.
7 s(u,A,J) ← btr(ID),tr(ID,A,_,J).
8 s(u,B,K) ← btr(ID),trcond(ID,B,K).
9 s(b,A,I) ← btr(ID),tr(ID,A,I,_).

10 s(b,B,K) ← s(u,B,K),btr(ID),tr(ID,A,_,_),B!=A.

(I1#) declaration of ¬OA(su →∗ g1) This part aims at finding the state
su from which g1 is not reachable. For that, we designed an ASP implementa-
tion of the reachability over-approximation presented in section 4.2. It consists
in building a Local Causality Graph (LCG) from pre-computed local-paths. A
predicate oa_valid(G,ls(A,I)) is then defined upon G to be true when the local
state ai is reachable from the initial state sG. The full implementation is given
in appendix B.1.

We instantiate a LCG u with the initial state su by declaring that the goal
is not reachable (oa_valid) (line 11).

11← oa_valid(u,ls(G,I)),goal(G,I).

(I2#) declaration of UA(sb →∗ g1) This part aims at finding the state sb
from which g1 is reachable. Our designed ASP implementation of the reachab-
ility under-approximation (section 4.2) consists in finding a sub-LCG G with
the satisfying properties for proving the sufficient condition. The edges of this
sub-LCG are declared with the predicate ua_lcg(G,Parent,Child). The graph is
parameterized by (1) a context which specifies a set of possible initial states and
(2) an edge from the node root to the local state(s) for which the simultaneous
reachability has to be decided from the supplied context. The full implementa-
tion is given in appendix B.2.

We instantiate the under-approximation for building a state sb from which
the goal g1 is reachable: g1 is a child of the root node of graph b (line 12).
The context is subject to the same constraints as sb from su (lines 13 and 14
reflect lines 9 and 10). Then, sb defines one local state per automaton among
the context from which the reachability of g1 is ensured (line 15), and according
to lines 9 and 10.

12 ua_lcg(b,root,ls(G,I)) ← goal(G,I).
13 ctx(b,A,I) ← btr(ID),tr(ID,A,I,_).
14 ctx(b,B,K) ← s(u,B,K),btr(ID),tr(ID,A,_,_),B!=A.
15 1 { s(b,A,I) : ctx(b,A,I) } 1 ← ctx(b,A,_).
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(I3) declaration of sb ∈ unf-prefix(s0) Given a prefix of an unfolding from s0
(section 4.1), checking if sb is reachable from s0 is an NP-complete problem [14]
which can be efficiently encoded in SAT [22] (and hence in ASP). A synthetic
description of the ASP implementation of reachability in unfoldings is given in
appendix C. The interested reader should refer to [13]. Our encoding provides a
predicate reach(a,i) which is true if a reachable state contains ai. Declaring sb
reachable from s0 is done simply as follows:

16 reach(A,I) ← s(b,A,I).

(I3#) declaration of UA(s0 →∗ sb) An alternative to (I3) which does not
require to compute a complete prefix of the unfolding is to rely on the under-
approximation of reachability similarly to (I2#). The under-approximation is
instantiated for the reachability of sb from s0 with the following statements:

17 ua_lcg(0,root,ls(A,I)) ← s(b,A,I).
18 ctx(0,A,I) ← s(0,A,I).

6 Experiments

We evaluate our method for the computation of bifurcation transitions in models
of actual biological networks showing differentiation capabilities. We have selec-
ted three networks showing at least two attractors reachable from a same initial
state. In these cases, by supplying an adequate goal state representing one of
the attractor, we expect to identify transitions causing a bifurcation from this
attractor. We start by introducing our three case studies.

Immunity control in bacteriophage lambda (Lambda phage) . A number of
bacterial and viral genes take part in the decision between lysis and lysogeniz-
ation in temperate bacteriophages. In the lambda case, at least five viral genes
(refered to as cI, cro, cII, N and cIII) and several bacterial genes are involved. We
apply our method on an automata network equivalent to the model introduced
in [41] and with two different goals, corresponding to lysis or lysogenization.

Epidermal Growth Factor & Tumor Necrosis Factorα (EGF/TNF) is a model
that combines two important mammalian signaling pathways induced by the
Epidermal Growth Factor (EGF) and Tumor Necrosis Factor alpha (TNFα)
[24,7]. EGF and TNFα ligands stimulate ERK, JNK and p38 MAPK cascades,
the PI3K/AKT pathways, and the NFkB cascade. This network encompasses
cross-talks between these pathways, as well as two negative feedback loops.

T-helper cell plasticity (Th) has been studied in [1] in order to investigate
switches between attractors subsequent to changes of input conditions. It is a cel-
lular network regulating the differentiation of T-helper (Th) cells, which orches-
trate many physiological and pathological immune responses. T-helper (CD4+)
lymphocytes play a key role in the regulation of the immune response. By APC
activation, native CD4 T cells (Th0) differentiate into specific Th subtypes pro-
ducing different cytokines which influence the activity of immune effector cell
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Automata Network Goal
(I3) (I3#)

|unf-prefix(s0)| |tb| Time |tb| Time

Lambda phage CI2 45
6 0.14s 0 0.34s

|Σ| = 4 |T | = 11 Cro2 3 0.15s 2 0.44s

EGF/TNF NFkB0 52
4 0.07s 2 0.15s

|Σ| = 28 |T | = 55 IKB1 3 0.07s 2 0.13s

Th_th1 BCL61 444
6 19.6s 5 25.82s

|Σ| = 101 |T | = 381 TBET1 5 13.08s 4 26.4s

Th_th2 GATA30 3264
7 28.7s 4 27.5s

|Σ| = 101 |T | = 381 BCL61 5 28.4s 4 28.01s

Th_th17 RORGT1 2860
9 23.9s 8 29.04s

|Σ| = 101 |T | = 381 BCL61 5 26.2s 4 26.64s

Th_HTG BCL61 OT
- - 6 61.9s

|Σ| = 101 |T | = 381 GATA31 - - 7 34.16s

Table 1. Experimental results for the identification of bifurcations depending if (I3)
or (I3#) is used. Models Th_th1, Th_th2, Th_th17, Th_HTG are the same automata
network but have different initial state. For each model, two different goals have been
tested. |Σ| is the number of automata, and |T | the number of transitions; | inf(s0)| is the
size (number of events in the partial order structure) of the prefix of the unfolding from
the initial state of the model; |tb| is the number of identified bifurcation transitions.
Computation times have been obtained on an Intel R© CoreTM i7-4600M 2.90GHz CPU
with 7.7GiB of RAM. OT indicates an out-of-time execution (more than one hour).

types. Several subtypes (Th1, Th2, Th17, Treg, Tfh, Th9, and Th22) have been
well established. We report in this paper four (Pro Th1, Pro Th2, Pro Th17,
Pro HTG(Th1 + Th17)) different initial state from which different attractors
are reachable. The network is composed of 101 nodes and 221 interactions.

Method. For each selected model with initial state and goal, we performed the
bifurcation identification following either (I1#), (I2#), (I3) (unfolding from s0);
or (I1#), (I2#), (I3#) (reachability under-approximation). We use clingo 4.5.3
[17] as ASP solver, and Mole [38] for the computation of the unfolding ((I3)).
The computation times correspond to the total toolchain duration, and includes
the local-paths computation, unfolding, ASP program generation, ASP program
loading and grounding, and solving. Note that the local-paths computation (and
ASP program generation) is almost instantaneous for each case. Source code and
models are provided in the supplementary material file.

Results. Table 1 summarizes the results of the experiments. The last exper-
iment shows the limit of the exact analysis of the reachable state space: the
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computation of the prefix is not tractable on this model. However, the alternat-
ive approach (I3#) allows to identify bifurcation transitions in this large model.
Following section 5.1, (I3#) always results in less bifurcations transitions than
(I3) with our models. It can be explained with the additional approximation for
the reachability of sb from s0, using the notations of section 3. One can finally
remark that when (I3) is tractable, (I3#) shows a slightly slower solving time, al-
beit of the same order of magnitude. This suggest that checking if a state belongs
to an unfolding is more efficient than checking its under-approximation. Finally,
because there exists to our knowledge no other method for identifying bifurca-
tions, we cannot compare our results with different methods, and in particular
with an exact method in order to appreciate the false negative rate obtained by
the (I1#)-(I2#)-(I3) scheme.

7 Conclusion

This paper presents an original combination of computational techniques to
identify transitions of a dynamical system that can remove its capability to
reach a (set of) states of interest. Our methodology combines static analysis of
Automata Networks (ANs) dynamics, partial order representations of the state
space, and constraint programming to efficiently enumerate those bifurcations.
To our knowledge, this is the first intregated approach for deriving bifurcation
transitions from concurrent models, and ANs in particular.

Bifurcations are key features of biological networks, as they model decisive
transitions which control the differentiation of the cell: the bifurcations decide
the portions of the state space (no longer) reachable in the long-run dynam-
ics. Providing automatic methods for capturing those differentiations steps is of
great interest for biological challenges such as cell reprogramming [12,1], as they
suggest targets for modulating undergoing cellular processes.

Given an initial state of the AN and a goal state, our method first computes
static abstractions of the AN dynamics and (optionnaly) a symbolic represent-
ation of the reachable state space with so-called unfoldings. From those prior
computations, a set of constraints are issued to identify bifurcation transitions.
We used Answer-Set Programming to declare the admissible solutions and the
solver clingo to obtain their efficient enumerations. For large models, the unfold-
ing may be intractable: in such a case, the methods relies only on reachability
over- and under-approximations. By relying on those relaxations which can be
efficiently encoded in ASP, our approach avoids costly exact checking, and is
tractable on large models, as supported by the experiments.

Further work will consider the complete identification of bifurcation trans-
itions, by allowing false positives (but no false negatives). In combination with
the under-approximation of the bifurcations presented in this paper, it will
provide an efficient way to delineate all the transitions that control the reachabil-
ity of the goal attractor. Future work will also focus on exploiting the identified
bifurcations for driving estimations of the probability of reaching the goal at
steady state, in the scope of hybrid models of biological networks [39,40].
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A Examples of Local Causality Graphs

Figure 4 gives examples of Local Causality Graphs (section 4.2) for approxim-
ation reachability of a2 in the AN of figure 1. The left LCG does not satisfy
the necessary condition (no local paths from c2 to c0), hence a2 is not reachable
from the given initial state〈a1, b0, c2〉. The middle LCG does satisfy the necessary
condition. And the right LCG is a valid sub-LCG for the sufficient condition for
a2 reachability.

a2

b0 b0 c2 c0

c0

a1 a2

b0

c1 c0

a2

b0 b1

b0 b0

c0

a1 a2

b0

b1

a2

a0

c0

b1 b0 c1 c0

b0

b1

b0 b1

b0 b0

a0 a0 b1 b1

c0 c0

a0 a2

root

Figure 4. Exemples of Local Causality Graphs for (left) over-approximation of a2
reachability from 〈a1, b0, c2〉 (middle) over-approximation of a2 reachability from
〈a1, b0, c1〉 (right) under-approximation of a2 reachability from 〈a0, b1, c1〉. The small
circles represent the local paths.
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B ASP implementation of Over- and Under-
approximation of Reachability

B.1 OA(s →∗ s′): necessary condition for reachability

We propose here a possible encoding of the necessary condition for reachability in
ANs outlined in section 4.2 and introduced in [29]. Starting from su(g) = g0, the
analysis starts with the local paths of the objective g0 g1: g1 is reachable only if
all the conditions of the transitions of at least one local path η ∈ local-paths(g0 
g1) are reachable. This recursive reasoning can be modelled with a graph relating
dependencies between objectives, local paths, and local states.

The local paths computed a priori are used to generate the template de-
claration of the directed edges of the LCG oa_lcg(G,Parent,Child) from each
possible objective ai aj . If local-paths(ai aj) = ∅, the objective ai aj is
linked to a node bottom:

1 oa_lcg(G,obj(a,i,j),bottom) ← oa_lcg(G,_,obj(a,i,j)).

otherwise, for local-paths(ai aj) = {η1, . . . , ηn}, we declare a node lpath for
each different local path m ∈ {1, . . . , n} as a child of ai aj :

2 oa_lcg(G,obj(a,i,j),lpath(obj(a,i,j),m)) ← oa_lcg(G,_,obj(a,i,j)).

then, for each different local state bk ∈ η̃m in the conditions of the local trans-
itions of ηm, we add an edge from the lpath node to ls(b,k):

3 oa_lcg(G,lpath(obj(a,i,j),m),ls(b,k)) ← oa_lcg(G,_,obj(a,i,j)).

In the case when the local path requires no condition (η̃m = ∅, this can happen
when the objective is trivial, i.e., ai ai, or when the local transitions do not
dependent on the other automata), we link the lpath to a node top:

4 oa_lcg(G,lpath(obj(a,i,j),m),top) ← oa_lcg(G,_,obj(a,i,j)).

A LCG G for over-approximation is parameterized with a state sG: if a local
path has a local state aj in its transition conditions, the node ls(a,j) is linked,
in G, to the node for the objective ai  aj (line 5), with ai = sG(a). It is
therefore required that state sG defines a (single) local state for each automaton
referenced in G (line 6).

5 oa_lcg(G,ls(A,I),obj(A,J,I)) ← oa_lcg(G,_,ls(A,I)), s(G,A,J).
6 1 { s(G,A,J) : ls(A,J) } 1 ← oa_lcg(G, _, ls(A, _)).

The necessary condition for reachability is then declared using the predicate
oa_valid(G,N) which is true if the node N satisfies the following condition: it is
not bottom (line 7); and, in the case of a local state or objective node, one of its
children is oa_valid (lines 8 and 9; or in the case of a local path, either top is
its child, or all its children (local states) are oa_valid (lines 10 and 11).

7← oa_valid(G,bottom).
8 oa_valid(G,ls(A,I)) ← oa_lcg(G,ls(A,I),X),oa_valid(G,X).
9 oa_valid(G,obj(A,I,J)) ← oa_lcg(G,obj(A,I,J),X),oa_valid(G,X).

10 oa_valid(G,N) ← oa_lcg(G,N,top).
11 oa_valid(G,lpath(obj(a,i,j),m)) ← ∧

bk∈η̃m oa_valid(G,ls(b,k)).
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B.2 UA(s →∗ s′): sufficient condition for reachability

We give here a declarative implementation of the sufficient condition for reachab-
ility in ANs outlined in section 4.2 and introduced in [15]. The under-approximation
consists in building a graph relating objectives, local paths, and local states which
satisfies several constraints. If such a graph exists, then the related reachabil-
ity property is true. Similarly to (I1#), we give template declarations for the
edges with the predicate ua_lcg(G,Parent,Child). We assume that the reachab-
ility property is specified by adding an edge from root to ls(a,i) for each local
state to reach.

The graph ua_lcg is parameterized with a context which is a set of local
states, declared with the predicate ctx(G,A,J). Every local states ai of the graph
that are not part of the reachability specification belong to that context (line 12);
and are linked to the objective aj ai for each aj in the context (line 13).

12 ctx(G,A,I) ← ua_lcg(G,N,ls(A,I)), N != root.
13 ua_lcg(G,ls(A,I),obj(A,J,I)) ← ua_lcg(G,_,ls(A,I)), ctx(G,A,J).

A first constraint is that each objective in the graph is linked to one and only
one of its local path. Therefore, objectives without local paths (local-paths(ai 
aj) = ∅) cannot be included (line 14), for the others, a choice has to be made
among local-paths(ai aj) = {η1, . . . , ηn} (line 15).

14← ua_lcg(G,_,obj(a,i,j)).
15 1 { ua_lcg(G,obj(a,i,j),lpath(obj(a,i,j),1..n)) } 1 ← ua_lcg(G,_,obj(a,i,j)).

As for oa_lcg, each local path is linked to all the local states composing its
transition conditions: for each m ∈ {1, . . . , n}, for each bk ∈ η̃m,

16 ua_lcg(G,lpath(obj(a,i,j),m),ls(b,k)) ← ua_lcg(G,_,obj(a,i,j)).

The graph has to be acyclic. This is declared using a predicate conn(G,X,Y) which
is true if the node X is connected (there is a directed path) to Y (line 17). A graph
is cyclic when conn(G,X,X) (line 18).

17 conn(G,X,Y) ← ua_lcg(G,X,Y). conn(G,X,Y) ← ua_lcg(G,X,Z), conn(G,Z,Y).
18← conn(G,X,X).

Then, if the node for an objective ai aj is connected to a local state ak, the
under-approximation requires ai aj to be connected with ak aj (assuming
that a has at least 3 local states, definition not shown):

19 ua_lcg(G,obj(A,I,J),obj(A,K,J)) ← not boolean(A), conn(G,obj(A,I,J),ls(A,K)).

When a local transition is conditioned by at least two other automata (for in-

stance c◦
ai,bj−−−→ c•), the under-approximation requests that reaching bj does

not involve other local states from a others that ai. This is stated by the
indep(G,Y,a,i,ls(b,j)) which cannot be true if bj is connected to a local state
ak with k 6= i line 20. Then, the under-approximation requires that at most one
indep predicate is false, for a given LCG G and a given local path Y (line 21).
Such an independence should also hold between the local states of the reachab-
ility specification (line 22).
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20 indepfailure(Y,ls(A,I)) ← indep(G,Y,A,I,N), conn(G,N,ls(A,K)), K!=I.
21← indepfailure(Y,N),indepfailure(Y,M),M!=N.
22 indep(G,root,A,I,ls(B,J)) ← ua_lcg(G,root,ls(A,I)),ua_lcg(G,root,ls(B,J)),B != A.

For ηm ∈ local-paths(ai aj), for each local transition a◦
`−→ a• ∈ ηm, for each

couple of different local states in its condition bk, cl ∈ `, bk 6= cl:

23 indep(G,lpath(obj(a,i,j),m),b,k,ls(c,l)) ← ua_lcg(G,_,lpath(obj(a,i,j),m)).

C ASP implementation of reachability in unfoldings

A (prefix of an) unfolding is an acyclic bipartite digraph where nodes are either
events (application of a transition) or conditions (change of local state) [13]. We
use the predicate post(X,Y) to denote an edge from X to Y ; and h(C,ls(A,I))
to denote that the condition C corresponds to the local state ai. Figure 5 shows
an example of unfolding.

A state s belongs to the prefix if it is possible to build a configuration such
that all the local states in s have a unique corresponding condition on the cut
of the configuration (line 1).

A configuration is a set of events, and we use e(E) to denote that the event
E belongs to the configuration. By definition, if E is in a configuration, all its
parent events are in the configuration (line 2). There should be no conflicts
between two events of a configuration: two events are in conflict if they share a
common parent condition (line 3).

A condition is on the cut if its parent event is in the configuration (line 4),
and none of its children event is in the configuration (line 5).

1 1 { cut(C) : h(C,ls(A,I)) } 1 ← reach(A,I).
2 e(F) ← post(F,C),post(C,E),e(E).
3← post(C,E),post(C,F),e(E),e(F),E != F.
4 e(E) ← cut(C),post(E,C).
5← cut(C),post(C,E),e(E).

48



e5

c=0 (c2) d=0 (c1)

e19 e18

e11

c=0 (c7)

e13

e12

e15 e14e17 e16

b=0 (c19)

b=1 (c18)

e3

a=0 (c35)b=0 (c34)

b=1 (c11)

b=1 (c10)

b=0 (c17) c=2 (c16)

a=1 (c33)b=0 (c32)

b=1 (c21)

a=1 (c13)

a=2 (c9)b=0 (c8)

e9

e8

c=1 (c12)

b=0 (c3)

e4e7

e6

e1

a=1 (c6)

b=0 (c5)

a=0 (c4)

b=0 (c22) a=0 (c23)

a=0 (c20)

a=0 (c36)

b=0 (c26) a=0 (c27)

b=0 (c24)a=1 (c25)

b=1 (c31)b=0 (c28) a=1 (c29) c=0 (c30)

a=0 (c15)

e10

b=1 (c14)

e2

Figure 5. Unfolding of the AN of figure 1. Events are boxed nodes, conditions have no
borders and indicate both the automata local state and the condition identifier.
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Abstract. Metabolic Networks, formed by series of metabolic pathways,
are made of intracellular and extracellular reactions that determine the
biochemical properties of a cell and by a set of interactions that guide
and regulate the activity of these reactions. Cancers, for example, can
sometimes appear in a cell as a result of some pathology in a metabolic
pathway. Most of these pathways are formed by an intricate and complex
network of chain reactions, and they can be represented in a human
readable form using graphs which describe the cell signaling pathways.
In this paper we present a logic, called Molecular Equilibrium Logic, a
nonmonotonic logic which allows representing metabolic pathways. We
also show how this logic can be presented in terms of a syntactical subset
of Temporal Equilibrium Logic, the temporal extension of Equilibrium
Logic, called Splittable Temporal Logic Programs.

1 Introduction

Molecular Interaction Maps [20], formed by a series of metabolic pathways, are
made of intracellular and extracellular reactions that determine the biochemical
properties of a cell by consuming and producing proteins, and by a set of interac-
tions that guide and regulate the activity of these reactions. These reactions are
at the center of a cell’s existence, and are regulated by other proteins, which can
either activate these reactions or inhibit them. These pathways form an intricate
and complex network of chain reactions, and can be represented using graphs.
Molecular Interaction Maps (MIM’s) [1] are such a representation, and it is pos-
sible to write these graphs using editors such as Pathvisio [17] (which outputs
its own XML representation) or System Biology Markup Language (SBML) [2]
editors.

These graphs can become extremely large, and although essential for knowl-
edge capitalization and formalization, they are difficult to use because: (1) Read-
ing is complex due to the very large number of elements, and reasoning is even
more difficult; (2) Using a graph to communicate goals is only partially suitable
because the representation formalism requires expertise; (3) Graphs often con-
tain implicit knowledge, that is taken for granted by one expert, but is missed
by another one.

⋆ Mart́ın Diéguez was supported by the Centre international de mathématiques et
d’informatique (contract ANR-11-LABX-0040-CIMI)
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Our aim consists in providing a logical framework that helps users to detect
possible inconsistencies as well as reasoning on such kind of maps. We have
chosen to use Pathvisio and its XML representation as our editor/representation
of choice for representing these graphs, but this work could be extended to SBML
and SBML editors. In [11], we modelled a restricted subclass of MIM’s in terms
of first-order logic with equality. This work was simplified into propositional
logic in [6], which enabled to use all propositional calculus tools such as solving
abductive queries on MIM’s. Unfortunately that representation was unable to
express the temporal properties of MIM, which are implicit in the formalisations.
So we extended our work with temporal logic in [5]. This representation was
enhanced with a naive approach to abductive temporal reasoning by assuming
bounded time and the so-called closed world assumption [27], a concept tightly
connected with Logic Programming and Non-Monotonic reasoning1. The use of
non-monotonicity allows us to use defaults and inertia rules to express things
like “a protein remains in the environment if it is not used in one reaction”,
which greatly enhances our temporal descriptions.

In order to incorporate such kind of defaults and to justify the use of the
closed world assumption in [5], we present in this paper Molecular Equilibrium
Logic (MEL), a reformulation of the temporal version of Molecular Interaction
Logic [5] in terms of Equilibrium Logic [25], a well-known logical characterisation
of Stable Models [15] and Answer Sets [9]. Moreover we show the existence of
a connection between MEL and Temporal Equilibrium Logic (TEL) [3], the
temporal extension of the Equilibrium Logic. By going one step further, we
show that MEL can be encoded in a syntactic subclass of TEL called splittable
temporal logic programs (STLP’s) [4], which allows us to capture the set of
Molecular Equilibrium Models (explained in Section 4) in terms of a Linear
Time Temporal Logic (LTL) formula [22] (see Section 7).

The rest of this paper is organized as follows: Section 2 presents several
biological concepts used along this paper as well as describes the problems to
solve in layman’s words and with a simple example. Section 3 describes the
concepts of production and regulation which are the basic operations present
in a MIM. Sections 4 and 5 respectively describe two different semantics based
on equilibrium logic: Molecular Equilibrium Logic and Temporal Equilibrium
Logic. The former is capable of describing general pathways while the latter is
the best-known temporal extension of Equilibrium Logic. In Section 6 we stablish
the relation between the two aforementioned formalisms, which is studied in
detail in Section 7 where we prove that the Equilibrium Models of our temporal
theories can be expressed in Linear Time Temporal Logic [22] via Temporal
Completion [4,10].

1 Regarding non-monotonic approaches to model biological systems, there are several
contributions in the area of Answer Set Programming [9,28], action languages [29]
or Inductive Logic Programming [12]. In these contributions the temporal behaviour
is considered in [29] but both representation and query languages are different.
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2 A simple classical example

In this section we introduce the example of the regulation of the lac operon [19]23,
which will be used and developed in the rest of this paper . The lac operon (lac-
tose operon) is an operon required for the transport and metabolism of lactose
in many bacteria. Although glucose is the preferred carbon source for most bac-
teria, the lac operon allows for the effective digestion of lactose when glucose is
not available. The lac operon is a sequence of three genes (lacZ, lacY and lacA)
which encode 3 enzymes. Then, these enzyms carry the transformation of lactose
into glucose. We will concentrate here on lacZ. LacZ encodes the β-galactosidase
which cleaves lactose into glucose and galactose. The lac operon uses a two-part
control mechanism to ensure that the cell expends energy producing the enzymes
encoded by the lac operon only when necessary. First, in the absence of lactose,
the lac repressor halts production of the enzymes encoded by the lac operon. Sec-
ond, in the presence of glucose, the catabolite activator protein (CAP), required
for production of the enzymes, remains inactive.

(a) The Lac Operon (b) MIM representing the Lac Operon

Fig. 1. Graphical and MIM representation of the Lac Operon.

Figure 1(a) describes this regulatory mechanism. The expression of lacZ
gene is only possible when RNA polymerase (pink) can bind to a promotor
site (marked P, black) upstream the gene. This binding is aided by the cyclic
adenosine monophosphate (cAMP in blue) which binds before the promotor on
the CAP site (dark blue). The lacl gene (yellow) encodes the repressor protein

2 The Nobel prize was awarded to Monod, Jacob and Lwoff in 1965 partly for the
discovery of the lac operon by Monod and Jacob [18], which was the first genetic
regulatory mechanism to be understood clearly, and is now a “standard” introduc-
tory example in molecular biology classes.

3 A less formal explanation can be found in https://en.wikipedia.org/wiki/Lac_

operon
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Lacl (yellow) which binds to the promotor site of the RNA polymerase when
lactose is not available, preventing the RNA polymerase to bind to the promoter
and thus blocking the expression of the following genes (lacZ, lacY and lacA):
this is a negative regulation, or inhibition, as it blocks the production of the pro-
teins. When lactose is present, the repressor protein Lacl binds with lactose and
is converted to allolactose, which is not able to bind to the promotor site, thus
enabling RNA polymerase to bind to the promotor site and to start expressing
the lacZ gene if cAMP is bound to CAP. cAMP is on the opposite a positive
regulation, or an activation, as its presence is necessary to express the lacZ gene.
However, cAMP is itself regulated negatively by glucose: when glucose is present,
the concentration of cAMP becomes low, and thus cAMP does not bind to the
CAP site, blocking the expression of lacZ. In this figure, we have three kinds of
entities which have different initial settings and temporal dynamics:

– lacl, lacZ and cAMP are initial external conditions of the model and they
do not evolve in time.

– galactosidase and the repressor protein can only be produced inside the
graph, and are always absent at the start (time 0) of the modeling. Their
value will then evolve in time according to the processes described by the
graph.

– glucose and lactose also evolve in time (like galactosidase and the repressor
protein) according to the processes described by the graph, but they are also
initial conditions of the system, and can either be present or absent at time
0, like lacl, lacZ and cAMP.

So, an entity must be classified according to two main characteristics: C1: It
can evolve in time according to the cell reactions (appear and disappear), or
it can be fixed, such as a condition which is independent of the cell reactions
(temperature, protein always provided in large quantities by the external envi-
ronment, etc. . . ). C2: It can be an initial condition of the cell model (present or
absent at the beginning of the modeling), or can only be produced by the cell.
There are thus three kinds of entities, which have three kind of behaviour:

Exogenous entities: an exogenous entity satisfies C1 and ¬C2; their status
never change through time: they are set once and for all by the environ-
ment or by the experimenter at the start of the simulation; the graph never
modifies their value, and if they are used in a reaction, the environment will
always provide “enough” of them.

Pure endogenous entities: on the opposite, a pure endogenous entity satisfies¬C1 and C2; their status evolves in time and is set only by the dynamic of
the graph. They are absent at the beginning of the reaction, and can only
appear if they are produced inside the graph.

Weak endogenous entities: weak endogenous entities satisfy C2 and C1; they
can be present or absent at the beginning of the process (they are initial
conditions of the model), however their value after the start of the process
is entirely set by the dynamic of the graph. So they roughly behave like pure
endogenous entities, but the initial condition can be set by the experimenter.
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The status of a protein/condition is something which is set by the biolo-
gist, regarding his professional understanding of the biological process described
by the graph4. However a rule of thumb is that exogenous entities are almost
never produced inside the graph (they never appear at the right side of a pro-
duction arrow), while endogenous entities always appear on the right side of
a production arrow (but they can also appear on the left side of a production
rule, especially weak endogenous entities). These distinctions are fundamental,
because the dynamics of these entities are different and they will have to be
formalized differently.

3 Fundamental operations

The mechanism described in the previous section is summarized in the simplified
graph in Figure 1(b). This example contains all the relationship operators that
will be used in the rest of this document. In order to make their presentation
clearer, we will distinguish between productions and regulations:
Productions can take two different forms, depending on whether the reactants
are consumed by the reactions or not: In Figure 1(b), lactose and galactosi-
dase produce glucose, and are consumed while doing so, which is thus noted
(galactosidase, lactose û glucose). On the opposite, the expression of the lacZ
gene to produce galactosidase (or of the lacl gene to produce the Lacl repressor
protein) does not consume the gene, and we have thus (lacZ þ galactosidase).
Generally speaking, If the reaction consumes completely the reactant(s) we write:
a1, a2, ⋯, an û b while if the reactants are not consumed by the reaction, we
write a1, a2, ...an þ b. In the former representation the production of b com-
pletely consumes a1, a2...an whereas in the latter a1, a2...an are not consumed
when b is produced.
Regulations can also take two forms: every reaction can be either inhibited or
activated by other proteins or conditions. In the Diagram of Figure 1(b), the
production of galactosidase from the expression of the lacZ gene is activated
by cAMP (we use cAMP þ to express activation). At the same time the same
production of galactosidase is blocked (or inhibited) by the Lacl repressor protein
(noted Repressor­).
Generally speaking, we write a1, a2, ...an þ if the simultaneous presence of
a1, a2, ...an activates a production or another regulation. Similarly we write
a1, a2, ...an ­ if the simultaneous presence of a1, a2, ...an inhibits a produc-
tion or another regulation. On Figure 2(a), we have a summary of basic inhibi-
tions/activations on a reaction: the production of b from a1,⋯, an is activated
by the simultaneous presence of c1,⋯, cn or by the simultaneous presence of
d1,⋯, dn, and inhibited by the simultaneous presence of e1,⋯, en or by the si-
multaneous presence of f1,⋯, fn. These regulations are often “stacked”, on many

4 It is important here to notice that lactose can be either considered as a weak en-
dogenous variable, or as an exogenous variable if we consider that the environment is
always providing “enough” lactose. It is a simple example which shows that variables
in a graph can be interpreted differently according to what is going to be observed.
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(a) Activations/Inhibitions (b) Stacking

Fig. 2. Examples of activations and inhibitions and stacking contexts.

levels (see Figure 2(b)). For example in Figure 1(b), the inhibition by the Lacl
repressor protein of the production of galactosidase can itself be inhibited by
the presence of lactose, while the activation of the same production by cAMP is
inhibited by the presence of glucose.

A final word of warning is necessary. Graphs pragmatically describe sequences
of operations that biologists find important. They are only a model of some of
the biological, molecular and chemical reactions that take place inside the cell;
they can also be written in many different ways, depending on the functional
block or operations that biologists want to describe, and some relationships are
sometimes simply left out because they are considered not important for the
function which is described in a particular graph.

4 Molecular Equilibrium Logic

In this section we introduce Molecular Equilibrium Logic. The syntax of this
logic consists of two elementary building blocks: pathway context and pathway
formula. The former corresponds to the representation of the activation and
inhibition conditions while the latter allows representing the production of new
substances (see Section 3). A pathway context is formed by expressions defined
by the following grammar:

α ∶∶= ⟨{α1,⋯, αn}P þ,{αn+1,⋯, αn+m}Q­⟩,
where P and Q are sets (finite and possibly empty) of propositional variables
representing the conditions of activation (þ) and inhibition (­) of the reaction.
Every context can be associated with a (possibly empty) set of activation (αi,
with 1 ≤ i ≤ n) and inhibition (αj , with 1 ≤ j ≤ m) contexts. One or both sets
can be empty. Broadly speaking, the context associated with a pathway formula
represents the set of substances that must be present or absent in order to make
the reaction possible. As an example of context, let us consider the example of
the Lac Operon, whose graph is displayed in Figure 1(b). The context associated
with the production rule lacZ þ Galactosidase corresponds to the following
expression:
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γ = ⟨{⟨∅þ,{Glucose}­⟩}{CAMP}þ,{⟨∅þ,{Lactose}­⟩}{Repressor}­⟩. (1)

A Pathway formula is a rule built from the grammar F ∶∶= [α] (P ∧ ⊸ q) ∣
F ∧ F , where α represents a context, ⊸∈ {û,þ}, P ∧ stands for a conjunction
of all atoms in the finite set P and q corresponds to a propositional variable.
Regarding our running example, which is shown in Figure 1(b), consists of three
different pathways, each of them corresponds to one of the following pathway
formulas:5

[⟨∅∅þ,∅∅­⟩] (Lactose,Galactosidaseû Glucose) (2)[⟨∅∅þ,∅∅­⟩] (lacl þ Repressor) (3)[γ] (lacZ þ Galactosidase) . (4)

From a biological point of view, substances can be created or destroyed by
reactions that might take place in parallel. Therefore, we must take into account
situations where a protein is produced and consumed at the same time or where
a protein remains present because it was not involved in a reaction which would
have consumed it. We model this aspect by extending the set of propositional
variables Σ to the set Σ̂ = Σ ∪ {Pr (p1) ,⋯,Pr (pn)} ∪ {Cn (p1) ,⋯,Cn (pn)},
where p1,⋯, pn are either a weak or pure endogenous variables. Informally speak-
ing, every atom of the form Pr (p) means that p is produced as a result of a
chemical reaction while Cn (p) means that the reactive p is consumed in a reac-
tion. Regarding our running example, we notice that the production of Glucose
implies that Galactosidase is consumed. However, Lactose, as an exogenous
variable is never consumed. From now on, we will use the symbols Σ and Σ̂
referring to, respectively, the signature (set of entities occurring in a MIM) and
its corresponding extension.

The semantics of MEL is based on the monotonic logic of Molecular Here and
There (MHT) plus a minimisation criterion among the Here and There models.
Given a set of propositional variables Σ we define a Molecular Here and There6

interpretation M as an infinite sequence of pairs mi = ⟨Hi, Ti⟩ with i = 0,1,2, . . .
where Hi ⊆ Ti ⊆ Σ̂ satisfying the following properties: for all endogenous variable
p ∈ Σ and for all exogenous variable q ∈ Σ and for all i ≥ 0,

(A) if Pr (p) ∈Hi then p ∈Hi+1;
(B) if p∈Hi and Cn (p)/∈Ti then p∈Hi+1;
(C) if Pr (p) ∈ Ti then p ∈ Ti+1;

(D) if p∈Ti and Cn (p)/∈Tithen p∈Ti+1;
(E) if q ∈Hi then q ∈Hi+1;
(F) if q ∈ Ti then q ∈ Ti+1.

5 Notice that only the pathway formula associated with the production of
Galactosidase has an associated context, defined in (1), while the rest of pathway
formulas have an empty context .

6 Here and There [16] is an intermediate logic which severs as a monotonic basis for the
Equilibrium Models [25], a logical characterisation of the Stable Model semantics [15]
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For simplicity, given a MHT interpretation, we write H (resp. T) to represent the
sequence of pair components H0,H1, . . . (resp. T0, T1, . . . ). Using this notation,
we will sometimes abbreviate the interpretation as M = ⟨H,T⟩. If H = T, we
will call M total model.

Before presenting the satisfaction relation we introduce the activation (A(α))
and inhibition (I(α)) expressions associated with a pathway context α = ⟨{α1,⋯
, αn}P þ,{βn+1,⋯, βn+m}Q ­⟩. Informally speaking, A(α) characterizes when
the context α is active while I(α) describes when it is inhibited. These expres-
sions, which will be used in the definition of the satisfaction relation, are defined
as follows:

A(α) = ⋀
p∈P p ∧

n⋀
i=1A(αi) ∧ (⋁

q∈Q¬q ∨
m⋀

j=n+1 I(βj))
I(α) = ⋁

p∈P ¬p ∨
n⋁
i=1I(αi) ∨ (⋀

q∈Q q ∧
m⋀

j=n+1A(βj)).
If one part of the context α is empty, then the corresponding part is of course
absent in A(α) and I(α). For instance, the activation and inhibition expressions
of the context γ described in (1) correspond to the Boolean expressions: A(γ) =
CAMP ∧ ¬Glucose ∧ (¬Repressor ∨Lactose) and I(γ) = ¬CAMP ∨Glucose ∨(Repressor ∧ ¬Lactose).

Given a MHT interpretation M, i ≥ 0 and a pathway formula F on Σ, we
define the satisfaction relation (M, i ⊧ F ) as follows:

– M, i ⊧ p iff p ∈Hi, for any variable p ∈ Σ;
– M, i ⊧ ¬p iff p /∈ Ti, with p ∈ Σ;
– disjunction and conjunction are satisfied in usual way;
– M, i ⊧ [α] (P ∧

û q) iff for all H′ ∈ {H,T} and j ≥ i , if ⟨H′,T′⟩, j ⊧ A(α)
and P ⊆H ′

j , then {Pr (q) ,Cn (p) ∣ p ∈ P an endogenous variable} ⊆H ′
j ;

– M, i ⊧ [α] (P ∧
þ q) iff for all H′ ∈ {H,T} and j ≥ i , if ⟨H′,T′⟩, j ⊧ A(α)

and P ⊆H ′
j , then Pr (q) ∈H ′

j ;

As in other equilibrium logic extensions, we relate two MHT models M = ⟨H,T⟩
and M′ = ⟨H′,T′⟩ as follows: M′ ≤ M iff T = T′ and for all i ≥ 0 H ′

i ⊆ Hi.
M′ < M if M′ ≤ M and M′ /= M. We say that a MHT interpretation M is
a Molecular Equilibrium Model of a set of pathway formulas Γ iff M is total,
M,0 ⊧ Γ an there is no M′ such that M′ <M such that M′,0 ⊧ Γ .

5 Temporal Equilibrium Logic

Temporal Equilibrium Logic (TEL) [3] extends Equilibrium Logic [25]7 with tem-
poral operators from Linear Time Temporal Logic [22]. TEL can also be seen

7 Modal extensions of Equilibrium Logic and the logic of Here and There can be
considered as promising lines of research which lead to several remarkable results,
among others, [7,13].
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as a temporal extension of the stable models semantics [15] for logic program-
ming. This formalism is very suitable for representing the temporal behaviour
of biological systems, since the use of the laws of inertia allows us to avoid the
specification of the large number of frame axioms [24] that should be considered
in the representation. The TEL formulas we will consider along this paper are
built from the following grammar:

ϕ ∶∶= � ∣ p ∣ ϕ1 ∧ ϕ2 ∣ ϕ1 ∨ ϕ2 ∣ ϕ1 → ϕ2 ∣ ◯ϕ1 ∣ ◻ϕ1 ∣ ◇ϕ2,

where ϕ1 and ϕ2 are also temporal formulas. Regarding the modal operators, ◯
is read “next”, ◻ is read “forever” and ◇ stands for “eventually” or “at some
future point”.

The semantics of TEL is defined, in the same spirit as in Equilibrium Logic, in
terms of a temporal extension of the logic of Here and There [16], called Temporal
Here and There (THT), plus a minimisation criterion among the THT models.
We define a Temporal Here and There interpretation M as an infinite sequence
of pairs mi = ⟨Hi, Ti⟩ with i = 0,1,2, . . . where Hi ⊆ Ti ⊆ Σ̂. For simplicity, given
a temporal interpretation, we write H (resp. T) to represent the sequence of pair
components H0,H1, . . . (resp. T0, T1, . . . ). Using this notation, we will sometimes
abbreviate the interpretation as M = ⟨H,T⟩. An interpretation M = ⟨H,T⟩ is
said to be total when H = T. The satisfaction relation ⊧ is interpreted as follows
on THT models (M is a THT model and k ∈ N):

1. M, k ⊧ p iff p ∈Hk, for any p ∈ Σ̂.
2. M, k ⊧ ϕ ∧ ψ iff M, k ⊧ ϕ and M, k ⊧ ψ.
3. M, k ⊧ ϕ ∨ ψ iff M, k ⊧ ϕ or M, k ⊧ ψ.
4. M, k ⊧ ϕ→ ψ iff for all H′ ∈ {H,T}, ⟨H′,T⟩, k /⊧ ϕ or ⟨H′,T⟩, k ⊧ ψ.
5. M, k ⊧ ◯ϕ iff M, k + 1 ⊧ ϕ.
6. M, k ⊧ ◻ϕ iff for all j ≥ k, M, j ⊧ ϕ.
7. M, k ⊧ ◇ϕ iff there is j ≥ k such that M, j ⊧ ϕ.
8. never M, k ⊧⊥.

Note that, as happens in Equilibrium logic, ¬ϕ def= ϕ→ �.

Proposition 1. Let M be a model. For all pathway context α and for all i ∈ N,
(a) M, i ⊧MHT A(α) iff M, i ⊧THT A(α); (b) M, i ⊧MHT I(α) iff M, i ⊧THT I(α);

Proof. First note that A(α) and I(α) are build on the language p, ¬p (with
p ∈ Σ), ∧ and ∨. Second, remark that, regarding the aforementioned language,
MHT and THT have the same satisfaction relation (note that when negation
only affects to atoms of Σ, M, i ⊧THT ¬p iff p /∈ Ti iff M, i ⊧MHT ¬p). From all those
facts it is easy to prove, by induction, (a) and (b). ∎

A formula ϕ is THT-valid if M,0 ⊧ ϕ for any M. An interpretation M is a
THT-model of a theory Γ , written M ⊧ Γ , if M,0 ⊧ ϕ, for all formula ϕ ∈ Γ .
Notice that when we disregard temporal operators, we obtain the logic of HT. On
the other hand, if we restrict the semantics to total interpretations, ⟨T,T⟩ ⊧ ϕ
corresponds to satisfaction of formulas T ⊧ ϕ in LTL. Given two interpretations
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M = ⟨H,T⟩ and M′ = ⟨H′,T′⟩ we say that M′ is lower or equal than M, written
M′ ≤ M, when T′ = T and for all i ≥ 0, H ′

i ⊆ Hi. As usual, M′ < M stands
for M′ ≤ M and M′ ≠ M. Finally, an interpretation M is said to be a temporal
equilibrium model of a theory Γ if M is a total model of Γ and there is no other
M′ <M, such that M′ ⊧ Γ .

6 From Molecular Equilibrium Logic to Temporal
Equilibrium Logic

In this section we first show how MEL can be embedded in TEL by providing
a translation between their monotonic basis, MHT and THT. The reader might
have noticed that the only differences between MHT and THT interpretations
are the constraints (A)-(F), which are imposed on the MHT. Those restrictions
can be captured in THT by adding the following rule of inertia, for any variable
p ∈ Σ as follows:

inertia(p) def= {◻((Pr (p) ∨ (p ∧ ¬Cn (p))) → ◯p) if p is an endogenous variable◻(p→ ◯p) if p is an exogenous variable.

Informally speaking, endogenous variables are true in the next state if they
are produced or if they are present and not consumed. On the other hand,
exogenous variables are automatically passed to the next state since they are
never produced or consumed. They are just present in the environment.

Proposition 2. Given a signature Σ, let M be a THT interpretation on Σ̂.
M is a MHT model (that is, M satisfies conditions (A)-(F) ) iff M,0 ⊧THT

inertia(p), for all variable p ∈ Σ.

Proof. From right to left, let us assume that M,0 ⊧THT inertia(p). It follows for
all i ≥ 0 M, i ⊧THT Pr (p) ∨ (p ∧ ¬Cn (p)) → ◯p, if p is an endogenous variable or
M, i ⊧THT (p→ ◯p) if p is exogenous. Using the THT satisfaction relation, it can
be easily seen that satisfying both implications implies to meet conditions (A)-
(F). Therefore M is a MHT model.

Conversely, if M is an MHT model, M satisfies conditions (A)-(F). It is easy
to prove, by using the satisfiability of THT, that conditions (A)-(D) imply that
M,0 ⊧THT inertia(p) for endogenous variables while conditions (E)-(F) imply
that M,0 ⊧THT inertia(p) for exogenous. ∎

Given a pathway formula F , we define the THT formula tr (F ) (on Σ̂) as:

tr ([α] (P ∧
û q)) = ◻⎛⎝A(α) ∧ P ∧ → ⎛⎝Pr (q) ∧ ⋀

p∈P Cn (p)⎞⎠⎞⎠ ;

tr ([α] (P ∧
þ q)) = ◻(A(α) ∧ P ∧ → Pr (q)) ;

tr (F1 ∧ F2) = tr (F1) ∧ tr (F1) ,
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where F1 and F2 are arbitrary pathway formulas and both p and q are endogenous
variables. Going back to our running example, the temporal theory associated
with (2)-(4) would correspond to the following THT formula:

◻(Lactose ∧Galactosidase→ (Pr (Glucose) ∧Cn (Galactosidase))) (2)∧ ◻ (lacl → Pr (Repressor)) (3)∧ ◻ (A(γ) ∧ lacZ → Pr (Galactosidase)) (4)

Theorem 1 (Correspondence). Let F be a pathway formula built on Σ and
M be a THT interpretation on Σ̂. It holds that:

(a) M,0 ⊧MHT F iff M,0 ⊧THT tr (F ) ∧ ⋀
p∈Σ inertia(p);

(b) M,0 ⊧MEL F iff M,0 ⊧TEL tr (F ) ∧ ⋀
p∈Σ inertia(p).

Proof. We first consider Case (a). Thanks to Proposition 2, we can reduce the
whole proof to the claim: M,0 ⊧MHT F iff M,0 ⊧THT tr (F ). It is easily to check
that this claim for elements of Σ as well as conjuntion and disjunction of ele-
ments of Σ (see Proposition 1). For the case of pathway formulas we proceed
by induction on the form of the pathway formulas: base cases, [α] (P ∧

û q) and[α] (P ∧
þ q), are proved by means of the satisfaction relation of THT and MHT,

Condition (A)-(F) and Proposition 1. The conjunction of pathway formulas fol-
lows directly from the induction hypothesis. Finally, Case (b) follows from (a)
since the minimisation used for computing the equilibrium models is the same
in both formalisms. ∎
7 MIM’s as splittable temporal logic programs

In this section we show how tr (F ) can be turned into an splittable temporal logic
program (STLP), a syntactical subset of TEL which has been studied in detail
in [4]. A Temporal Logic Program Π on Σ̂ is said to be splittable if Π consists
of rules of any of the forms:

(1) B ∧N →H;
(2) B ∧ ◯B′ ∧N ∧ ◯N ′ → ◯H ′;

(3) ◻(B ∧N →H);
(4) ◻(B ∧ ◯B′ ∧N ∧ ◯N ′ → ◯H ′),

whereB andB′ are conjunctions of atoms,N andN ′ are conjunctions of negative
literals like ¬p with p ∈ Σ̂, and H and H ′ are disjunctions of atoms. The (positive)
dependency graph, of an STLP Π, noted G(Π), is a graph whose nodes are the
atoms of Π and the edges are defined by the expression below:

E = {(p, p) ∣ p ∈ E} ∪ {(p, q) ∣ ∃B →H ∈Π s.t. p ∈H and q ∈ B}.
A set of atoms L is called a loop of a logic program Π iff the subgraph

of G(Π) induced by L is strongly connected. Notice that reflexivity of G(Π)
implies that for any atom p, the singleton {p} is also a loop. Every loop of G(Π)
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generates an implication which is called loop formula[21,14,4]8. By LF (Π) we
refer to the conjunction of all loop formulas of Π.

Theorem 2 (from [4]). Let Π be an STLP and T an LTL model of Π. Then⟨T,T⟩ ⊧TEL Π iff T ⊧LTL Π ∧LF (Π). ∎
tr (Γ ) ∧ ⋀

p∈Σ inertia(p) can be expressed as a STLP, thanks to the following

THT equivalences:

1) ◻(((ϕ1 ∨ ϕ2) ∧ ψ) ↔ ((ϕ1 ∧ ψ) ∨ (ϕ2 ∧ ψ)));
2) ◻(((ϕ1 ∧ ϕ2) ∨ ψ) ↔ ((ϕ1 ∨ ψ) ∧ (ϕ2 ∨ ψ)));
3) ◻((ψ → (ϕ1 ∧ ϕ2)) ↔ ((ψ → ϕ1) ∧ (ψ → ϕ2)));
4) ◻(((ϕ1 ∨ ϕ2) → ψ) ↔ ((ϕ1 → ψ) ∧ (ϕ2 → ψ)));
5) ◻(ϕ1 ∧ ϕ2) ↔ (◻ϕ1 ∧ ◻ϕ2).

For example, the following STLP corresponds to rules (2)-(4) plus the rules of
inertia for the atoms Glucose, Repressor, Lac, LacZ, Galactosidase, Lactose
and CAMP :

◻(Lactose ∧Galactosidase→ Pr (Glucose))◻ (Lactose ∧Galactosidase→Cn (Galactosidase)) } (2)

◻(lacl → Pr (Repressor)) } (3)

◻(CAMP ∧ ¬Glucose ∧ ¬Repressor ∧ lacZ → Pr (Galactosidase))◻ (CAMP ∧ ¬Glucose ∧Lactose ∧ lacZ → Pr (Galactosidase)) } (4)

◻(Pr (Glucose) → ◯Glucose)◻ (Glucose ∧ ¬Cn (Glucose) → ◯Glucose) } inertia(Glucose)
◻ (Pr (Repressor) → ◯Repressor)◻ (Repressor ∧ ¬Cn (Repressor) → ◯Repressor) } inertia(Repressor)
◻ (Pr (Galactosidase) → ◯Galactosidase)◻ (Galactosidase ∧ ¬Cn (Galactosidase) →◯Galactosidase)

⎫⎪⎪⎪⎬⎪⎪⎪⎭ inertia(Galactosidase)
◻ (Lactose→ ◯Lactose) } inertia(Lactose)◻ (CAMP → ◯CAMP ) } inertia(CAMP )◻ (Lacl → ◯Lacl) } inertia(Lacl)◻ (LacZ → ◯LacZ) } inertia(LacZ)

Observation 1 Let Γ be a set of pathway formulas and Π = tr (Γ )∧ ⋀
p∈Σ inertia(p),

expressed as an STLP. Then

8 We refer the reader to [4] for details about the computation of such loop formulas.
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(a) G(Π) has only unitary loops;
(b) Since G(Π) has only unitary loops, Temporal Equilibrium Models of Π co-

incide with the LTL models of the temporal extension of Clark’s comple-
tion [10,4], denoted by COMP (Π) [4]. ∎

Temporal Completion consists in specifying, along time, that the truth value of
an atom p ∈ Σ̂ must be logically equivalent to the disjunction of all its possible
causes (see [4] for details). More precisely, COMP (Π) corresponds, in our case,
to the following expression:

COMP (Π) = ◻(◯p↔ (Pr (p) ∨ (p ∧ ¬Cn (p))) ∧ ◻⎛⎝Pr (p) ↔ ⋁[α](P∧⊸p)∈F P
∧ ∧A(α)⎞⎠

∧ ◻⎛⎝Cn (p) ↔ ⋁[α](P∧ûp)∈F P
∧ ∧A(α)⎞⎠ .9

Theorem 3 (Main result). Let Γ be a set of pathway formulas, Π = tr (Γ ) ∧⋀
p∈Σ inertia(p) and T be an LTL model of Π.

⟨T,T⟩ ⊧MEL Γ iff T ⊧LTL COMP (Π).
Proof. From Theorem 1 we get that ⟨T,T⟩ ⊧MEL Γ iff ⟨T,T⟩ ⊧TEL Π. From
Theorem 2 it follows that ⟨T,T⟩ ⊧TEL Π iff T ⊧LTL Π∧LF (Π). Finally, regarding
Observation 1 we can reduce Π ∧ LF (Π) to COMP (Π) so, therefore T ⊧LTL
COMP (Π). ∎
8 Conclusion and Future Work

In this paper we gave a formal representation of MIM’s in terms of Temporal
Equilibrium Logic. To do so, we first defined Molecular Equilibrium Logic, a
nonmonotonic logic for dealing with general pathways. Then we showed that
this logic can be captured by an LTL formula via a translation into Splittable
Temporal Logic Programs under TEL semantics.

As a follow up, we are looking for a way to solve abductive temporal queries
on MIM’s. Abductive query express important properties; for example the ab-
ductive solution to ◇◻ ⋀

p∈Σ (p↔◯p) is the set of all possible conditions that make

the cell reach a stable state. An idea to undertake this problem is to combine the
works on abduction in Equilibrium Logic [26] and in modal logic [23] in order to
define a procedure for abduction in Temporal Equilibrium Logic. Furthermore,
finding the complexity of our fragment of temporal equilibrium logic is an open
problem. Although in the general case it is known to be EXPSPACE [8], this
bound might be lower in our case as the problem is restricted to STLP’s with
only unitary loops.

9 We omitted the completion at time step 0 since the formula at the initial state
depends on the extensional database, which is not considered here.
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Abstract. We consider the problem of characterizing metabolic flux
modes in steady state, which satisfy some given arbitrary Boolean reg-
ulation constraint rc. We show that minimal-support solutions, called
MCFMs (minimal constrained flux modes), constitute a (in general
strict) superset of those EFMs (elementary flux modes, which are the
minimal-support solutions in absence of regulation constraint) that sat-
isfy rc (called EFMrcs), the only ones computed by the existing tools.
We propose a general SMT (Satisfiability Modulo Theory)-based algo-
rithm with two different minimization processes allowing the computa-
tion of all MCFMs, resp. all EFMrcs. The modeling language offers a
great expressiveness allowing one to query the network with Boolean con-
straint, bounded solutions size and metabolites maximization. Results of
ourMCFTool about EFMrcs are compared to those of RegEfmtool for
various types of Boolean constraints. We improve the state-of-the-art for
enough specific queries, i.e. when the problem is sufficiently constrained
to get a greatly reduced solution space, offering the perspective of scal-
ability at the size of the genome for those queries, while characterizing
the whole solution space, both things that are inaccessible to nowadays
tools.

1 Introduction

The analysis of metabolic networks has become a major topic in biotechnology
in recent years. Applications range from the enhanced production of selected
outputs to the prediction of genotype-phenotype relationships. The notion of
elementary flux mode (EFM) is a key concept derived from the analysis of
metabolic networks from a pathway-oriented perspective. An EFM is defined as
a smallest (for reactions set inclusion) sub-network that enables the metabolic
system to operate in steady state with all irreversible reactions proceeding in
the appropriate direction [17, 18]. EFM analysis is a useful metabolic path-
way analysis tool to identify the structure of a metabolic network that links
the cellular phenotype to the corresponding genotype. Applications of network-
based pathway analysis have been presented for predicting functional properties
of metabolic networks, measuring different aspects of robustness and flexibility,
and even assessing gene regulatory features [20, 7]. In the context of cellular
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metabolism, robustness is defined as the ability of cells to achieve the optimal
performance even under perturbations imposed by a gene knockout. The robust-
ness of cellular metabolism is mainly due to the redundancy of pathway options
that the wild type can choose from to function in order to achieve similar perfor-
mance. With this concept, it is also possible to compare the pathways taken in
different tissues and in different physiological conditions. Actually, EFMs can
only be enumerated in small to medium-scale metabolic networks because the
number of EFMs increases exponentially with the network size [12]. The huge
number of EFMs associated with large biochemical networks prevents from
drawing simple conclusions from their analysis. Studies have been carried out on
the analysis of sub-networks. The method to calculate these fluxes is based on
the double description algorithm [13, 6] which enumerates the extremal rays in
a pointed polyhedral cone. Being a computationally demanding task, several ap-
proaches to parallel or distributed computation of elementary modes have been
proposed through parallelization techniques [8] or algorithmic reformulations [22,
11, 21]. To speed up the computation of EFMs, gene regulatory information has
been taken into account to eliminate mathematically possible EFMs [10]. The
authors added Boolean expressions to reduce the solution space. In adding 58
Boolean functions to the E. coli core model [15] they divided by three the number
of EFMs. Despite RegEfmTool [9] allows a very fast computation of EFMs,
it relies for most of the cases on a post processing treatment to take into account
added constraints. The double description algorithm [13, 6] does not allow a Just
in Time calculation of EFMs.

Moreover, the very output of classical EFM tools may be questionable. On
most of interesting biological models, current tools can easily generate millions
of solutions, making the answer simply untractable for any human being. It is
thus essential to offer an efficient navigation into the set of solutions to be able
to test and exploit any biological scenario. We propose in this work to navigate
in the solution space by allowing the user to add/remove constraints on the
solutions he wants to focus on. As we will show in this paper, this is not only
about filtering out subsets of the initial set of EFMs. By adding constraints,
the minimality criterion of EFMs in the original problem does not hold any-
more and minimal solutions in the enriched theory may need to merge together
a large number of the original EFMs, making any process built upon EFMs
calculation unefficient.
In a previous work [16], we proposed a method based on SAT solvers [4] to
calculate EFMs. We were inspired by the seminal paper on Knowledge Base
Compilation Techniques [5] but, instead of explicitly compute all the EFMs,
we only answered a set of queries on the network. We proposed to develop a
method similar to Just in Time Knowledge Compilation [1], based on SAT solv-
ing, to determine network properties. In this paper, we propose to add Boolean
regulatory constraints directly in our method of EFMs computation. Moreover,
we characterize other metabolic flux modes in steady state MCFMs (minimal
constrained flux modes), which satisfy some given arbitrary Boolean regulation
constraints. We show that these minimal-support solutions constitute a superset
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of the EFMs which satisfy the same constraints. We propose a general SMT
(Satisfiability Modulo Theory)-based algorithm [2, 14] with two different mini-
mization processes allowing the computation of all MCFMs, resp. all EFMs
satisfying given arbitrary Boolean constraints.

2 EFMrcs vs MCFMs

A metabolic network model is given by r enzymatic reactions ER = {R1, ..., Rr},
with possibly a subset of those reactions known as irreversible, Irr ⊆ ER, m ≤ r
internal metabolites IM = {M1, ...,Mm} and a stoichiometric matrix S ∈ Rm×r

with full rank m. A flux distribution v ∈ Rr is defined by given flux rates for all
reactions. Its support is the set of reactions it is made of: Supp(v) = {Ri|vi 6= 0}.

Definition 1 (EFM). The set C of flux distributions enabling the network to
operate at steady state with all irreversible reactions proceeding in the appropriate
direction is:

C = {v ∈ Rr | Sv = 0 ∧ ∀Ri ∈ Irr vi ≥ 0} (1)

The elementary flux modes (EFMs) are the solutions of minimal support:

E = {e ∈ C | @e′ ∈ C Supp(e′) ⊂ Supp(e)} (2)

C is a convex polyhedral cone. It is pointed (in 0) if Irr = ER, which can
be always realized by splitting any reversible reaction R into two irreversible
reactions R and Rrev, which will be assumed in the following. An EFM is
characterized up to a positive scalar by its support, i.e. two EFMs having the
same support are equal within a positive scalar factor and will be identified.
An EFM is thus a ray of E and will be noted < e >= {λe|λ > 0} for any
representative e, its support being Supp(e). The EFMs are the extremal rays
of C and any element of C can be expressed as a linear combination of EFMs
with nonnegative coefficients.
Let rc be any Boolean formula on the set of variables ER. For v ∈ C, we denote
by rc(v) the truth value of rc for the valuation given by Ri = True iff vi 6= 0,
i.e. Ri ∈ Supp(v). Thus rc(v) depends only on Supp(v). But notice there is
in general no monotonic relation between the satisfiability of the constraint rc
and the supports inclusion, i.e., if Supp(v) ⊂ Supp(v′), it may happen that
rc(v) ∧ ¬rc(v′) as well as ¬rc(v) ∧ rc(v′).

Definition 2 (MCFM). The set Crc of flux distributions at steady state sat-
isfying the direction of irreversible reactions and Boolean regulation constraint
rc is:

Crc = {v ∈ C | rc(v)} (3)

The minimal constrained flux modes (MCFMs) are the solutions of minimal
support:

Mrc = {e ∈ Crc | @e′ ∈ Crc Supp(e′) ⊂ Supp(e)} (4)

67



Again, we will be in general interested only in the supports of the MCFMs, as
for a given support, it is easy to recover the flux coefficients from the equation
Sv = 0. We will see that anMCFM is characterized up to several positive scalars
by its support and can be noted < e1, ..., ek >= {λ1e1+ ...+λkek|λ1, ..., λk > 0}
for given representatives e1, ..., ek, its support being Supp(e1) ∪ ... ∪ Supp(en).
Lemma 1 Let Erc = {e ∈ E | rc(e)} the subset of EFMrcs, i.e. those EFMs
satisfying rc. Then Erc ⊆Mrc, i.e. any EFMrc is an MCFM (the converse is
generally false).

This result points out that the operations of Boolean constraint satisfaction and
support-minimality do not commute. If a flux distribution has a minimal support
among all non constrained flux distributions in C, i.e. is an EFM , and happens
to satisfy rc, then it has obviously a minimal support among all constrained flux
distributions in Crc, i.e. is an MCFM . But it may happen that an MCFM
owns a strict subset, which is a flux distribution in C (that obviously does not
satisfy rc) and thus is not an EFM . The consequence is that the subset Erc

of the EFMrcs, obtained by filtering the EFMs by the constraint rc, which is
the only one presently computed by the state-of-the-art tool RegEfmtool [9],
does not characterize the minimal-support elements of the solution space of our
problem, i.e. the flux distributions satisfying rc. Our objective is precisely to
compute these MCFMs.

Consider for example the very simple metabolic network in Figure 1, with
ER = Irr = {R1, R1rev, T1, T2, T3, T4} (the reactions Ti, which involve both
internal and external metabolites, are called transporters), IM = {A,B} and
stoichiometric coefficients equal to 1. I.e., the first line of S is (-1 1 1 0 -1 0)
and the second line (1 -1 0 1 0 -1). Notice that we split the reversible reaction
R1 into two irreversible reactions R1 and R1rev. So, we are already in a case
where a Boolean constraint applies, i.e. rc0 = ¬R1∨¬R1rev, expressing that the
two irreversible reactions issued from this splitting cannot occur together in one
solution. Such constraints are handled implicitly in an ad-hoc way by existing
tools, such as Efmtool, by suppressing a posteriori solutions of E containing
a cycle such as {R1, R1rev} to obtain Erc0. At the opposite, our method will
handle them explicitly as any other Boolean constraint during the computation
itself. In this very particular case, results are the same, i.e. Mrc0 = Erc0, as, if a
flux distribution satisfies rc0, so does any subset of it (rc0 satisfies a monotonic
property with regards to support inclusion). The EFMrc0s are thus given by
Erc0 = {e1, e2, e3, e4} with e1 =< R1 + T1 + T3 >, e2 =< R1rev + T2 + T4 >,
e3 =< T1 + T4 >, e4 =< T2 + T3 >.

Now, suppose we are only interested in flux distributions containing the two
reactions T1 and T2, i.e. satisfying the constraint rc = T1 ∧ T2, and we look
for the minimal-support ones. A classical tool as RegEfmtool will not return
any solution after filtering of EFMs of Erc0 by rc as Erc0∧rc = ∅. But actually,
there are three MCFMs: Mrc0∧rc = {m1,m2,m3} with m1 =< R1 + T1 +
T3, T2 + T3 >= e1 + e4, m2 =< R1rev + T2 + T4, T1 + T4} = e2 + e3, m3 =<
T1 + T4, T2 + T3 >= e3 + e4.
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Fig. 1. Toy metabolic network.

The solution space Crc is a subcone of the cone C but, unlike C, it is not
convex in general. For example, with e1 and e2 as above, e1+ e2 /∈ Crc0. This is
general for any constraint which is a disjunction of at least two negative literals,
rc = ¬Ri1 ∨¬Ri2 ∨ ...∨¬Rin . Because if ∃vj , vk ∈ C with {Ri1 , ..., Rin}\{Rij} ⊆
Supp(vj), Rij /∈ Supp(vj),{Ri1 , ..., Rin}\{Rik} ⊆ Supp(vk), Rik /∈ Supp(vk),
then vj , vk ∈ Crc and vj + vk /∈ Crc as {Ri1 , ..., Rin} ⊆ Supp(vj + vk).
Nevertheless, for particular types of constraints, the convexity is ensured. This
is the case for products, i.e. conjunctions of literals. Actually, if rc = Ri1 ∧ ... ∧
Rik ∧ ¬Rik+1

∧ ... ∧ ¬Rin and v, v′ ∈ Crc, then {Ri1 , ..., Rik} ⊆ Supp(v), ∀j
ik+1 ≤ j ≤ in Rj /∈ Supp(v), Rj /∈ Supp(v′), thus, ∀λ, λ′ > 0, λ + λ′ = 1, as
Supp(λv+λ′v′) = Supp(v)∪Supp(v′), one gets {Ri1 , ..., Rik} ⊆ Supp(λv+λ′v′),
∀j ik+1 ≤ j ≤ in Rj /∈ Supp(λv + λ′v′). So, if rc is a product, then Crc is a
convex polyhedral cone but, unlike C, it is not in general topologically closed
(neither open). As any Boolean constraint rc is equivalent to a DNF (Disjunctive
Normal Form), Crc is actually a union of convex polyhedral cones. This union
can be assumed to be disjoint by choosing the products in the DNF two by two
unsatisfiable together. Each convex polyhedral cone of the union is included in
a face of C (defined by the negative literals of the corresponding product, where
¬Ri defines the hyperplane vi = 0).

Any element of Crc, as for C, is a nonnegative linear combination of un-
decomposable solutions. But, unlike the EFMs, which are at the same time
minimal-support and undecomposable solutions, these two properties no longer
coincide in presence of rc. An MCFM is obviously undecomposable in Crc but
in general not any undecomposable solution is an MCFM . Actually it can be
shown that non minimal undecomposable solutions are obtained by combining
an MCFM and an EFM in E\Erc, and can thus be computed in this way if
needed. We will now present our SMT-based method to compute Mrc and Erc,
i.e. the MCFMs and the EFMrcs.

3 SMT encoding

As shortly mentioned in the introduction, we previously worked with a SAT en-
coding representation of metabolic networks for EFMs computation [16]. How-
ever, despite good results on some specific hard networks, ensuring that found
pathways were steady state solutions forced us to enrich the SAT solver with
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an ad hoc linear algebra engine, making the final tool closer to a naive SMT
solver rather than a plain SAT engine. Most of the time was spent in exploring
branches that could have been cut if we had more expression power. In this pa-
per, we propose to completely reformulate the initial problem into SMT in order
to unleash the full power of SMT solvers, while keeping our initial idea intact.
We use the SMT CVC4 [3] for its performance and documentation. As we will
show in this section, this will allow many kinds of additional constraints to be
added.

3.1 Stoichiometric and irreversibility constraints
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Fig. 2. Toy example of a metabolic network.

Let us now describe how we propose to encode a metabolic pathway into
SMT constraints. As a running example, we will follow the encoding of the toy
example of Figure 2. We first split the reversible reactions R2 and T1 into two
irreversible ones, R2, R2rev and T1, T1rev respectively. The network is thus
given by ER = Irr = {R1, R2, R2rev, T1, T1rev, T2, T3}, IM = {A,B,C,D}
and stoichiometric matrix S with lines (-1 0 0 2 -2 0 0), (0 -1 1 1 -1 0 0), (-1 2
-2 0 0 0 0), (1 0 0 0 0 -1 2). A metabolic pathway can now be encoded with the
following rules (real variable R is used for the flux of the pathway in the reaction
R and real variable M for the quantity of the internal metabolite M):

1. Since all reactions are now irreversible, they must have a nonnegative flux:
∀R ∈ ER, R ≥ 0. In the given example, this gives the following rules:
T1 ≥ 0, T1rev ≥ 0, R1 ≥ 0, R2 ≥ 0, R2rev ≥ 0, T2 ≥ 0, T3 ≥ 0.

2. Two irreversible reactions issued from the splitting of one reversible reaction
are mutually exclusive: ∀R,Rrev ∈ ER, (R > 0) =⇒ (Rrev = 0) and
(Rrev > 0) =⇒ (R = 0). On the example, this gives the following rules:
(T1 > 0) =⇒ (T1rev = 0), (T1rev > 0) =⇒ (T1 = 0), (R2 > 0) =⇒
(R2rev = 0), (R2rev > 0) =⇒ (R2 = 0).

3. Internal metabolites must be nonnegative: ∀M ∈ IM, M ≥ 0. On our
example, this is expressed as: A ≥ 0, B ≥ 0, C ≥ 0, D ≥ 0.

4. At least one internal metabolite must be used:
∑

M∈IM M > 0. Our example
produces the following constraint: A+B + C +D > 0.
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5. A positive internal metabolite value is equal to the sum, weighted by the
stoichiometry, of fluxes of all reactions that produce it, respectively that
consume it: ∀M ∈ IM, (M > 0) =⇒ (M =

∑
R|S(M,R)>0 S(M,R) × R ∧

M = −∑
R|S(M,R)<0 S(M,R) × R). Again, on our example, this produces

the following constraints: (A > 0) =⇒ (A = 2× T1∧A = R1+ 2× T1rev),
(B > 0) =⇒ (B = T1 + R2rev ∧ B = R2 + T1rev), (C > 0) =⇒ (C =
2×R2∧C = R1 + 2×R2rev), (D > 0) =⇒ (D = R1 + 2× T3∧D = T2).

6. If an internal metabolite is null, fluxes of all reactions that produce or con-
sume it are null too: ∀M ∈ IM, (M = 0) =⇒ ∀R ∈ ER (S(M,R) 6= 0 =⇒
R = 0). This gives on our illustrative example: (A = 0) =⇒ (T1 = 0∧R1 =
0 ∧ T1rev = 0), (B = 0) =⇒ (T1 = 0 ∧ R2 = 0 ∧ T1rev = 0 ∧ R2rev = 0),
(C = 0) =⇒ (R1 = 0∧R2 = 0∧R2rev = 0), (D = 0) =⇒ (R1 = 0∧T2 =
0 ∧ T3 = 0).

3.2 Boolean constraints

Any Boolean constraint in CNF (Conjunctive Normal Form) can be expressed in
our tool. More precisely, nonnegative real-valued variables are used for reactions
and the regulation constraints are written as follows :
1. The positive literal R, i.e. the reaction R must be active, is given by R > 0.
2. The negative literal ¬R, i.e. the reaction R must not be active, is given by
R = 0.

3. Any conjunction of clauses made up of literals as above can be expressed.
4. An upper boundary on the size of the solution can be added, by summing

active reactions and asserting a constraint that the sum is below a given
constant.

This formalism is very convenient to express a lot of biological constraints of
interest, for example:
– Constraining metabolites. Since metabolites are encoded in SMT like reac-

tions, the same formalism can be used to express Boolean constraints on
metabolites or on both reactions and metabolites.

– Maximization of metabolite production. Finding the EFMrcs/MCFMs that
maximize the production of an output metabolite given an input, while sat-
isfying every other constraint. This can be achieved by finding an initial
solution then searching another one with a higher production ratio and iter-
ate the process.

– Independent pathways. Finding all EFMrcs/MCFMs producing a given
metabolite such that each solution does not share any reaction with the
others. This can be easily done by iteratively forbidding all reactions found
in a solution and restarting the search.

– Robustness. Finding all fluxes producing a given metabolite such as each flux
does not share at least X reactions with others. For doing so, from an initial
solution, we ensure with a constraint that at least X reactions present in this
solution are inactive for the search of the next solution.

– Bounding set. Adding a boundary over a specific set. This can be done in
the same way as we do with global boundary.
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4 Minimization

With the encoding presented in Section 3, the SMT solver computes an initial
solution v0 satisfying stoichiometric and irreversibility constraints and Boolean
constraint rc if any, i.e. an element of Crc. We know that v0, as any element
of C, is a nonnegative linear combination of EFMs. But, as we are interested
in computing MCFMs and EFMrcs, we will define minimization procedures
focused on finding such minimal solutions included in v0. Then, after having
blocked any possible solution whose support would contain the support of a
minimal solution found so far, the process is repeated iteratively from a new
initial solution v1 given by the solver, up to the moment where either no more
initial solution is found (and thus all minimal solutions have been exhaustively
found) or the number of minimal solutions found reaches a given upper bound.

We describe in algorithm 1 one step of this iteration, i.e. the minimization
procedure which provides (some, not all in general in one step) minimal solutions
included in a SMT solution sol. The corresponding algorithms differ if we are
looking for MCFMs or EFMrcs (we call them Minimize_MCFM and Mini-
mize_EFM respectively), but the main idea is the same: either the solution sol
is minimal or it contains at least one reaction R that can be removed, while
ensuring to stay inside the cone C, for continuing recursively the search for a
minimal sub-solution. To gain efficiency by finding several minimal sub-solutions
instead of just one, the recursion is actually double, on the solution sub-flux
subf1 extracted from sol by removing R and on the sub-flux subf2 obtained by
“subtracting” subf1 to sol. As subf2, which belongs to C, is not guaranteed to
satisfy the constraint rc, we cannot suppose in the successive recursive calls that
sol is a solution in Crc.

Algorithm 1 Minimize_X(sol) (where X is MCFM or EFM)
Input: a flux sol ∈ C. Output: a decomposition of sol into MCFMs or EFMrcs

1: subf1 = extract_X(sol)
2: if subf1 == {} then
3: if check_constraint(sol) then
4: SMT.addConstraint(

∨
R∈Supp(sol)R = 0)

5: return {sol}
6: else
7: if (X == EFM) then
8: SMT.addConstraint(

∨
R∈Supp(sol)R = 0)

9: end if
10: return {}
11: end if
12: end if
13: subf2 = subtract(sol, subf1)
14: return Minimize_X(subf1) ∪Minimize_X(subf2)
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We first (line 1) extract a strict sub-flux subf1 of sol that belongs to C. It
is the only procedure which differs for MFMs and EFMrcs computation and
it is presented below in algorithms 3 and 4. If sol is minimal, this procedure
always returns {}. In this latter case (line 2), we check (line 3) if sol satisfies the
constraint rc, i.e. ∈ Crc (this checking cannot be done in general higher than in
a leaf of the recursion tree as a flux may not satisfy rc and contain a sub-flux
that satisfies rc). If it is the case, we block for the future (line 4) the exploration
of any flux whose support would contain Supp(sol), by adding to the SMT the
constraint expressing that the flux in at least one reaction of Supp(sol) has to
be null, and we return sol as a minimal solution (line 5). If it is not the case (line
6), we return {} (line 10) and, as it means that sol ∈ E\Erc, i.e. is an EFM
that does not satisfy rc, we can before that, but only in the Minimize_EFM
algorithm (it is not possible for Minimize_MCFM as an MCFM may contain
such an EFM), block the exploration of any flux that would contain this EFM
(lines 7-9). We then subtract subf1 (within a positive scalar) from sol (line 13)
to get a positive linear decomposition of sol into proper sub-fluxes subf1 and
subf2. We finally proceed to a double recursive call of the Minimize procedure
on these two sub-fluxes and return the union of the results (line 14).

Algorithm 2 subtract(sol, subf1) Input: sol, subf1 ∈ C with subf1 sub-flux of
sol. Output: subf2 ∈ C with sol positive linear combination of subf1 and subf2
1: min = min{i|Ri∈Supp(subf1)}(soli/subf1i)
2: return sol −min× subf1

The subtract procedure is described in algorithm 2. This procedure returns
the difference between the flux sol and a well chosen positive multiple of the
flux subf1 (line 2). The choice of this positive scalar is done in order to ensure
that the flux obtained is a proper sub-flux of sol and ∈ C, i.e. verifies irre-
versibility constraints, which means has nonnegative coefficients. This is guar-
anteed by choosing the scalar min (line 1) so that a coefficient corresponding to
Supp(subf1) is canceled while the others remain nonnegative.

4.1 Extraction for MCFM

The extraction procedure extract_MCFM for MCFMs computation is de-
scribed in algorithm 3.

We simply force the SMT to search for a solution (of all constraints, so includ-
ing rc) whose support is strictly included in Supp(sol). For this, we temporarily
(which is ensured by storing the input state of the SMT, line 1, and restoring
it before returning the result, line 9) add constraints expressing that the flux in
at least one reaction of Supp(sol) has to be null (line 2) while the fluxes in all
reactions out of Supp(sol) have to be null (line 3). If there is a solution (line 4),
then the solution found (line 5) is returned (line 10). If not (line 6) then {} (line
7), used by the algorithm 1, is returned (line 10).
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Algorithm 3 extract_MCFM(sol) Input: a flux sol ∈ C.
Output: a proper sub-flux subf1 of sol ∈ Crc or {} if it does not exist
1: SMT.checkPoint()
2: SMT.addConstraint(

∨
R∈Supp(sol)R = 0)

3: SMT.addConstraint(
∧

R 6∈Supp(sol)R = 0)

4: if SMT.isSAT () then
5: subf1 = SMT.getSolution()
6: else
7: subf1 = {}
8: end if
9: SMT.RestorecheckPoint()
10: return subf1

4.2 Extraction for EFM

The extraction procedure extract_EFM for EFMrcs computation is described
in algorithm 4.

Algorithm 4 extract_EFM(sol) Input: a flux sol ∈ C.
Output: a proper sub-flux subf1 of sol ∈ C or {} if it does not exist
1: if dim(kernel(SSupp(sol))) = 1 then
2: return {}
3: else
4: ker = getKernel(S, sol)
5: min = min{i|Ri∈Supp(sol)}(keri/soli)
6: if min < 0 then
7: return sol − (1/min)× ker
8: else
9: max = max{i|Ri∈Supp(sol)}(keri/soli)
10: return sol − (1/max)× ker
11: end if
12: end if

Unlike the extract_MCFM procedure that relies entirely on the SMT solver,
the extract_EFM procedure relies on specific properties of EFMs expressed
with linear algebra. The key property that characterizes an EFM e, i.e. an
extremal ray of the cone C, is that the kernel of SSupp(e), the sub-matrix of the
stoichiometric matrix S made up of the column vectors corresponding to the
reactions in Supp(S), has dimension one. So we begin to check this property
for sol. If it is satisfied (line 1), this means that sol is an EFM and thus does
not contain any proper sub-flux ∈ C and so we return {} (lines 2 and 13). If
not (line 3), i.e. this dimension is at least two, we pick up any non null vector
ker of the kernel of S (thus such that Sker = 0) with Supp(ker) ⊆ Supp(sol)
and ker not colinear to sol (this is what does the function getKernel(S, sol)
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line 4) and we build a linear combination subf1 of this vector and sol in order
to cancel at least one coefficient and thus decrease the dimension. As both sol
and ker ∈ Kernel(S), we are sure it is also the case for subf1. To ensure that
subf1 ∈ C, we have to guarantee that all its coefficients are nonnegative. This
is achieved by adding to sol (whose coefficients are nonnegative) a well chosen
multiple of ker such that all the coefficients remain nonnegative, except at least
one that becomes null. As coefficients of ker may be of any sign (ker /∈ C in
general), there are two cases: if ker contains at least one negative coefficient, it
is added to sol after multiplication by the positive scalar −(1/min) (lines 5-7);
if all coefficients of ker are nonnegative, it is added to sol after multiplication
by the negative scalar −(1/max) (lines 8-10). In both cases the vector subf1
obtained is returned (line 13).

Notice that if we are interested in computing both MCFMs and EFMrcs,
instead of running the two algorithms Minimize_MCFM and Minimize_EFM, it
is more efficient, taking into account that EFMrcs are included in MCFMs to
run only Minimize_MCFM, that provides all MCFMs, and enrich it at leaves
(line 5 of algorithm 1) by a test checking if the foundMCFM sol is an EFMrc.
The test is the same as line 1 of algorithm 4, i.e. the kernel of SSupp(sol) has
dimension one.

5 Experimental results

We focus in this section on the experimental study of MCFTool (for Minimal
Constrained Flux tool), the SMT-based Metabolic Network Analysis tool we
implemented. It is important to notice that, despite its impressive performances,
RegEfmtool does not allow the diversity of constraints MCFTool allows. It is
thus not trivial to report an empirical study as fair as possible, each of the
approaches being not always comparable. We will thus first focus on typical run
cases where both RegEfmtool and MCFTool can be used. Then, in a second
part, we will try to report how MCFTool behaves on some typical run cases
scenarios.

Moreover, MCFTool does not include any network compression for now,
so for fair comparison we decided to use compressed networks (computed by
RegEfmTool) as the input for both RegEfmTool andMCFTool. Of course, we
turned off compression in RegEfmTool since the network is already compressed.

As a last remark, let us point out that our tool is able to compute both
MCFMs and EFMs. Thus, as an aside information, we will also reportMCFMs
computations time in all figures. As we will see, there are generally slightly more
MCFMs than EFMs and thus the computation time is slightly larger. We
however think it is a good information for consolidate the reader understanding
of EFMs vs MCFMs since the first figures. We will focus on the experimental
study of MCFMs computation in the last subsection below.

We used a cluster of bi-pro Intel R© Xeon R© E5-2609v2 2.5GHz, 8 Core, 64
GB, ubuntu 64 bit machine for this experiment.
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Problem Time RegEfmTool MCFTool

aradidopsis-1 339s 665,324 30,585
aradidopsis-2 1400s 1,504,145 84,483

i AS253 Timeout (6h) None 135,400

Table 1. Comparison of RegEfmTool andMCFTool performances on classical EFMs
generation. Timeout was set to 6 hours.

We will first compare MCFTool and RegEfmTool without additional con-
straints, then we will explain the Boolean constraints generation and compare
them with constraints made up of products of positive then negative literals,
after that we will compare them with constraints that are well processed by
RegEfmTool.

5.1 Plain Calculation (no constraints)

RegEfmTool, which is based on Efmtool, is a very optimized and fast tool
to produce huge numbers of EFMs. As we pointed out above in this paper,
we took an orthogonal approach. In this section, we want to stress how fast
MCFTool is on RegEfmTool favorite field. In general our approach is one (and
sometimes several) order(s) of magnitude slower than RegEfmTool. Despite
this, we wanted to report how far our approach can go in the time needed by
RegEfmTool to complete (recall that our approach is anytime). We used two
metabolic pathway problems derived from arabidopsis such as the calculation
time is less than 6 and 24 minutes with RegEfmTool. We added a third (more
challenging) problem, called "i AS253" [19], to complete the comparison.

Even if the set of problems we chose is very small, it is sufficient to point out
typical run cases. As reported in table 1, we can see that our tool cannot easily
cope with so many EFMs. Thus, when no additional constraints are added,
RegEfmTool is clearly the method of choice. However, the anytime aspect of
MCFTool can be crucial on large networks, where we can report at least some
answers when RegEfmTool is not able to terminate.

5.2 Calculation with constraints

Constraints generation Measuring how adding constraints (by queries) im-
pacts the final result is not trivial. In order to build a set of queries, the result of
which will characterize a typical query with less than 5,000 EFMs answers, we
adopted a generate and test strategy. We chose an upper bound of 5,000 EFMs
as an estimation of how many EFMs/MCFMs a human being may handle
(otherwise the user will have to add constraints to filter the answer). Again, we
took the well studied arabidopsis network (containing 1,504,145 EFMs) and
created a set of queries by randomly picking reactions until the set of EFMs
(obtained by RegEfmTool) is less than 5,000. In order to consolidate our CPU
time, all reported CPU times are the median over 15 runs.
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Fig. 3. Execution time with positive reactions selection.

Calculation with positive and negative selection Figure 3 does not display
MCFM ’s execution times because in this case MCFMs and EFMs are not
equal so comparing them does not make sense. Figures 3 and 4 reports execution
times on positive (conjunct of positive literals) and negative (conjunct of negative
literals) selections, respectively. As expected, RegEfmTool is able to handle all
the queries but, as this is done for the major part in post-processing, most EFMs
computation requires around 25 minutes. There is no substantial gain. At the
opposite, we observed a very important discrepancy in MCFTool performances
depending on the positive/negative aspect of the query. Our approach seems to
be very irregular (figure 3 shows a lot of timeouts while figure 4 is much more
in favor of our approach). This can be probably explained if we carefully look at
our queries. Positive queries, in average, select around 4 reactions when negative
select in average 14 reactions. Indeed, when a reaction is randomly selected for a
positive query, if this reaction is a transporter this will decrease drastically the
number of EFMs in the network. However, this will not increase as much the
number of rules that can be used for propagation. At the opposite, a negative
query needs to remove several transporters before decreasing significantly the
number of EFMs. In other words, a positive selection query does not sufficiently
reduce the combinatorial aspect of pathways. A negative selection query implies
a larger number of constraints leading to more propagations in the SMT engine.

Calculation with constraints well handled byRegEfmTool RegEfmTool
restricts constraints to be used for filtering during the iteration process in the
double description method to the rules “only require input reactions with the
value 1 and an output reaction with the value 0” which can be expressed by “If
reaction X is active then reaction Y is not”. So, in this section, we generated this
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Fig. 4. Execution time with negative reactions selection.

kind of queries. In average these queries contain around 59 clauses. As we can see
in Figure 5, MCFTool is faster than RegEfmTool on queries where additional
constraints strongly reduces the number of solutions. However, RegEfmTool
scales better and is faster when the solution contains more than 4000 EFMs.
As we initially targetted problems with few solutions (the user will add con-
straints to reduce the set of solutions to explore), this shows that our approach
is very competitive, even on queries that RegEfmTool can easily handle.

5.3 Comparing EFMs and MCFMs

Previously, we compared RegEfmTool and MCFTool, by focusing only on
queries that were handled by RegEfmTool. However, our tool can handle more
complex queries or constraints, not handled by RegEfmTool. We fairly did not
report results on such queries: we wanted to focus on the comparison between
the two approaches. In the same spirit, we did not focused on practical aspects
of MCFMs computation whereas this is typically the strong point of our ap-
proach (our tool is the only one capable of this, so an experimental comparison
is not possible). As it is reported on the above figures, we did however reported
MCFMs computation on the queries we computed, whenMCFMs and EFMs
are equal .

6 Conclusion

The calculation of metabolic fluxes based on an SMT allows a direct querying of
the network without enumerating all the solutions of the initial problem and then
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filtering them with added constraints and allows the expression of a large type
of constraints: regulation of enzymes, maximization/minimization of metabolites
production/uptake, selection of specific fluxes distribution, size of fluxes distri-
bution, robustness. The major advantage of this method is that it enables a
just in time computation whereas the state-of-the-art methods, based on Double
Description, need the complete iterative computation before producing first so-
lutions and, when constraints are added, often cannot much filter intermediate
solutions during the iteration process, most of the filtering having to be done at
the end when all non constrained solutions have been found (this is in particular
the case for Boolean regulation constraints, due to the absence of monotonicity
property between constraints satisfaction and support inclusion, except for very
special types of constraints). In addition our method is able to compute the
minimal solutions of the problem with constraints and not just those minimal
solutions of the problem without constraints filtered by the constraints, which
is not done by any tool. However our approach lacks efficiency when the solu-
tion space is not enough constrained by the query and we have to face a large
enumeration. In this case, the approaches based on Double Description, like
RegEfmTool, outperform us. But it is the opposite when the problem is suffi-
ciently constrained. Moreover, other kinds of constraints than Boolean ones can
be easily taken into account inside the SMT framework, such as thermodynam-
ics or kinetics. Consequently, using our method for selecting EFMs/MCFMs
under constraints should now allow studying large metabolic networks almost
instantly and open the possibility to calculate them at the genome scale.
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Abstract. Computing the constant Z that normalizes an arbitrary distribution
into a probability distribution is a difficult problem that has applications in statis-
tics, biophysics and probabilistic reasoning. In biophysics, it is a prerequisite for
the computation of the binding affinity between two molecules, a central ques-
tion for protein design. In the case of a discrete stochastic Graphical Model,
the problem of computing Z is equivalent to weighted model counting in SAT
or CSP, known to be #P-complete [38]. SAT solvers have been used to accel-
erate guaranteed normalizing constant computation, leading to exact tools such
as cachet [33], ace [8] or minic2d [28]. They exploit determinism in the
stochastic model to prune during counting and the dependency structure of the
model (partially captured by tree-width) to cache intermediary counts, trading
time for space. When determinism or structure are not sufficient, we consider the
idea of discarding sufficiently negligible contributions to Z to speedup counting.
We test and compare this approach with other solvers providing deterministic
guarantees on various benchmarks, including protein binding affinity computa-
tions, and show that it can provide important speedups.

1 Introduction

Graphical models [12] are sparse representations of highly dimensional multivariate
distributions that rely on a factorization of the distribution in small factors. When vari-
ables are discrete, graphical models cover a variety of mathematical models that repre-
sent joint discrete distributions (or functions) that can be either Boolean functions (e.g.,
in propositional satisfiability SAT and constraint satisfaction CSP), cost functions (as in
partial weighted MaxSAT and Cost Function Networks [9]) or probability distributions
(in stochastic models such as Markov Random Fields and Bayesian networks).

Typical queries on such graphical models are either optimization or counting queries
(or a mixture of these). In optimization queries, we look for an assignment that max-
imizes the joint function, i.e., a model in SAT, a solution in CSP or a Maximum a
posteriori assignment (MAP) in a Markov Random Field (MRF). All these problems
have an associated NP-complete decision problem.

Counting problems are central in stochastic graphical models because they capture
the computation of marginal probabilities on subsets of variables and the computation of
the normalizing constant Z that is required to define a probability distribution from the
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non-normalized distribution of Markov Random Fields. This difficult problem requires
a summation over an exponential number of elementary terms and is #P-complete [38].
As shown by [37], one call to a #-P oracle suffices to solve any problem in the Meyer-
Stockmeyer polynomial hierarchy in deterministic polynomial time, an indication that
it could be outside of the PH.

Computing Z is a central problem in statistics (e.g., for parameter estimation in
MRFs), for Bayesian network processing (to account for evidence) and is also crucial
in statistical physics where it is called the partition function. A typical domain where
partition function computation can be extremely useful is computational protein design.
Indeed, the affinity of a protein for a specific target molecule can be estimated by mod-
eling both molecules as MRFs representing physics force fields and by computing the
two partition functions: one for the bound protein and target and another for the same
molecules in unbound state [35].

For these reasons, various approaches have been designed to tackle this problem.
The Mean-Field algorithm [17], Tree-reweighted Belief Propagation [40] as well as
more recent proposals [25] have been proposed, but they do not offer any formal guar-
antee on the quality of the approximation they produce, except in very special cases.
Monte-Carlo methods including Markov Chain Monte Carlo methods [16] offer asymp-
totic convergence /s, but convergence is impractically slow. Indeed, there are recent
significant examples showing that the time needed for Monte Carlo methods to con-
verge can be easily under-estimated [36]. Practical MCMC based tools also rely on
heuristics that destroy these theoretical guarantees. More recent stochastic methods ex-
ploiting universal hashing functions offer “Probably Approximately Correct” (PAC)
estimators [14, 7]. Here, a bound δ on the probability that the estimation does not lie
within a (1 + ε) ratio of the true value is set and a corresponding estimation produced.

Finally, different methods, mostly based on SAT-solvers, have been defined that can
perform exact weighted model counting (#SAT) with deterministic guarantees, a prob-
lem to which the problem of computing Z can be easily reduced. To avoid the exponen-
tial blowup in the number of terms to add, solvers providing deterministic guarantees
rely on two independent ideas: exploiting determinism (zero weights) to prune regions
of the space that do not contribute to the sum, and exploiting independence which may
be detected at the graphical model structure level, as captured by its tree-width, but also
at a finer level as context-sensitive independence [33]3. Independence enables caching
of intermediate counts that can be factored out and lead to exponential time savings at
the cost of memory. The very same ideas are also exploited in knowledge compilers
that may compile graphical models or SAT formulas to languages on which counting
becomes easy [8, 28].

In this paper, we explore the possibility of preserving the deterministic guarantees
of exact solvers and explore a new source of pruning that may be present even when
determinism or independence are too limited to allow for exact counting: detecting and
pruning regions for which it is possible to prove, at limited cost, that they contain an
amount of weight which is too small to significantly change the computed value of Z.
Instead of providing a PAC guarantee, our algorithm provides an approximation of the

3 They may also exploit the fact that counting the number of models of a valid formula is easy.
This requires to check for validity, something that modern CDCL solvers do not do anymore.
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normalizing constant that is guaranteed to lie within a ratio of 1 + ε of the true value
(with probability 1), a guarantee that none of the PAC randomized algorithms above
can provide in finite time.

Our initial motivation for computingZ lies in Computational Protein Design (CPD).
The aim of CPD is to design new proteins that have desirable properties which are
not available in the existing catalog of known proteins. One of these properties is the
affinity between a protein and another molecule (such as another protein, a peptide, an
amino-acid, a small organic molecule, etc. . . ). The binding affinity gives an indication
of the likelihood that two molecules will prefer to bind together rather than remain
dissociated and thus that a protein will be likely to bind to another molecule of interest.
Proteins can be described as a set of bound atoms subjected to a number of atom scale
forces captured by a pairwise force field defining a Markov Random Field [29]. From
this MRF, the binding affinity can be estimated by computing the ratio of the partition
functions of the molecules in bound and unbound states [35, 15].

In the rest of the paper, after introducing our notations and the binding affinity
computation problem, we present the Z∗ε algorithm, a variant of Branch and Bound
targeted at counting instead of optimizing. Z∗ε relies on the availability of a local upper
bound on Z. We then consider different simple, fast, safe and incremental upper bounds
on Z, integrate them in Z∗ε and compare them to exact counting tools on two categories
of benchmarks: general benchmarks extracted from the UAI and Probabilistic Inference
(PIC’2011) challenges and partition function computation problems appearing as sub-
problems of binding affinity computation on real proteins. Surprisingly, despite a very
limited caching strategy, the resulting algorithm is able to outperform exact solvers on
a variety of problems and is especially efficient on CPD-derived problems. Because Z∗ε
relies on a new source of pruning, its underlying principle and associated bounds can
be immediately used to improve existing SAT-based counters using Max-SAT bounds,
which are closely related to local consistencies in Cost Function Networks [23, 4, 24].

2 Background

A Markov Random Field defines a joint probability distribution over a set of variables
as a factorized product of local functions, usually denoted as potential functions.

Definition 1 A discrete Markov Random Field (MRF) is a pair (X,Φ) where X =
{1, . . . , n} is a set of n random variables, and Φ is a set of potential functions. Each
variable i ∈ X has a finite domain Di of values that can be assigned to it. A potential
function φS ∈ Φ, with scope S ⊆ X , is a function φS : DS 7→ R ∪ {∞} where DS

denotes the Cartesian product of all Di for i ∈ S.

The energy or potential of an assignment t ∈ DX is denoted asE(t) =
∑
φS∈Φ φS(t[S])

where t[S] is the projection (or restriction) of t to the variables in S. Notice that this
definition shows that an MRF is essentially equivalent to a Cost Function Network (or
WCSP [9]). A tuple t ∈ DS will be represented as a set of pairs {(i, t[i]) | i ∈ S}.

The probability of a tuple t ∈ DX is then defined as:

P (t) =
exp(−E(t))∑

t′∈DX exp(−E(t′))
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The normalizing constant below the fraction is usually denoted as Z. The potential φS
are called energies, in relation with statistical physics. An assignment with minimum
energy has therefore maximum probability. With pairwise potentials (|S| ≤ 2), an MRF
defines a graph with variables as vertices and potential scopes S as edges. In the rest of
this paper, for the mere sake of simplicity and w.l.o.g., we assume pairwise MRFs in-
cluding also unary potential functions and a constant φ∅ potential function. We denote
by d the maximum domain size and e the number of pairwise potential functions. Using
table representations, a pairwise MRF requires O(ed2) space to be represented.

Note that Bayesian networks can be seen as specific MRFs enforcing a local nor-
malization condition of potentials and a specific DAG-base graph structure, that to-
gether guarantee that Z = 1. As soon as evidence (observations) change the domain
of the variables however, Bayesian networks become unnormalized and computing Z
becomes #P-complete in general.

2.1 Computational Protein Design and Binding Affinity

Proteins are linear chains of small molecules called “amino-acids”. There are 20 nat-
ural different amino-acids. All amino-acids share a common core and the cores of all
successive amino-acids in a proteins are linked together to form a linear chain, called
the protein backbone. Each amino-acid also has a variable side-chain which chemical
nature defined the precise amino-acid used. This lateral chain is highly flexible. The
structure of a protein in 3D-space is therefore characterized by the shape of the lin-
ear chain itself (the backbone), and the specific spatial orientation of all side-chains,
at each position of the chain. Proteins are universally present in the cells of all living
organisms and perform a vast array of functions including catalyze, signaling, recogni-
tion, transporting, repair. . . Proteins differ from one another primarily in their sequence
of amino-acids which usually results in protein folding into a specific 3D structure that
determines its function. The characteristic of proteins that also allows their diverse set
of functions is their ability to bind other molecules, with high affinity and specificity.
See [5, 1] for an intrduction to proteins targeted at the CP audience.

Proteins have a relatively stable general shape. The relative stability of a molecule
in a given conformation can be evaluated by computing its energy, lower energy states
being more stable. This energy is derived from various molecular forces including bond
angles, electrostatic forces, molecular clashes and distances. It can be computed us-
ing existing force fields such as Amber [29], the one used in our experiments. Notice
that molecular clashes – interpenetrating atoms – may generate infinite energies i.e.,
determinism.

Despite a plethora of functionalities of proteins, there is still an ever-increasing de-
mand for proteins endowed with specific properties of interest for many applications
(in biotechnology, synthetic biology, green chemistry and nanotechnology) which ei-
ther do not exist in nature or have yet not been found in the biodiversity. To this end,
Computational structure-based Protein Design (CPD) has become a key technology. By
combining physico-chemical models governing relations between protein amino-acid
composition and protein 3D structure with advanced computational algorithms, CPD
seeks to identify one or a set of amino-acid sequences that fold into a given 3D structure
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and possess the targeted properties. This in silico search for the best sequence candi-
dates opens up new possibilities to better guide protein engineering by focusing exper-
imentation on the relevant sequence space for the desired protein function and thereby
reducing the size of mutant libraries that need to be built and screened. In recent years,
CPD has experienced important success, especially in the design of therapeutic pro-
teins [27], novel enzymes [31], protein-protein interfaces [18, 32], and large oligomeric
ensembles [19]. Nevertheless, the computational design of proteins with defined affinity
for a given molecule (such as a small organic, a peptide, another protein. . . ) which is
essential for large range of applications, continues to present challenges.

L
rotamer 1 rotamer 2

Bac
kb

one

Side chain

ARG rotamers

Fig. 1. A local view of a protein with a backbone and two acid side-chain reorientations (rotamers)
for a given amino-acid (L = Leucine). A typical rotamer library for another amino-acid is shown
on the right (ARG = Arginine).

A traditional approach to model proteins in CPD is to assume that their backbone
is totally rigid and that only side-chains move, each side-chain being able to adopt a
discrete set of most likely conformations defined in a so-called “rotamer” library (see
Figure 1). We use the Penultimate rotamer library [26].

With one variable per side-chain, each with a domain equal to the set of avail-
able rotamers for this side-chain and a pairwise decomposable energy function such
as Amber force field, a protein naturally defines a pairwise MRF with a rather dense
graph. The partition function Z of this MRF captures important properties of the pro-
tein. Specifically, the association constant (or binding constant) is used to describe the
affinity between a protein and a ligand (a protein or another molecule of interest). This
association constant can be estimated by computing the partition function of the two
molecules in bound and unbound states. The ratio of these two partition functions being
proportional to their affinity.

From a computational point of view, an important property of proteins of inter-
est is that their general shape is stable which means that the proportion of low energy
(or high probability) states among the exponential number of possible states is likely
to be very small. On the opposite side of the energy scale, the infinite energies cre-
ated by molecular clashes means that there will be states with 0 probability. This is
favorable for exact solvers that can exploit determinism to speedup Z computation. It
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however means that CPD instances will exhibit unbounded tilt (defined in [7] as the
ratio τ =

maxt∈DX P (t)

mint∈DX P (t) ). This situation is not ideal for the WeightMC PAC algorithm
which requires a finite upper-bound on τ to run in finite time.

3 Guaranteed counting

Because it is rarely (if ever) needed to compute a probability or a partition function
with an absolute precision (which is also inherently limited by finite representations),
we consider the general problem of computing an ε- approximation Ẑ of Z, i.e., such
that:

Z

1 + ε
≤ Ẑ ≤ Z (1)

Such approximation allows us to compute an estimate P̂ (t) = exp(−E(t))

Ẑ
such that

P (t) ≤ ˆP (t) ≤ (1 + ε)P (t). In the context of #-SAT, it has been shown that providing
such relative approximations remains intractable for most of the known SAT polyno-
mial classes [30]. As we will see, it can however be exploited to prune during poly-
nomial space depth-first tree-search based counting and sometimes provide important
speedups.

Assuming that for any MRF, and any assignment t of some of its variables, we can
compute an upper bound Ub(t) of the partition function of the MRF where variables
are assigned as in t, the Depth First Branch and Bound schema used for exactly solv-
ing optimization problems on cost function networks [9, 1] can be adapted to compute
Z [39].

Function Z∗ε (t, V )
if V = ∅ then1

Ẑ ← Ẑ + exp(−E(t));2

else
Choose i ∈ V ;3

for a ∈ Di do
t′ ← t ∪ {(i, a)};
if (U + Ub(t′) + Ẑ ≤ (1 + ε)Ẑ) then4

U ← U + Ub(t′);5

else
Z∗ε (t′, V − {i});

Algorithm 1: Guaranteed approximate counting. Initial call: Z∗ε (∅, X). U and Ẑ are
global variables initialized to 0.

The algorithm simply explores the tree of all possible assignments of the MRF,
starting with the whole set of unassigned variables (in V ), choosing an unassigned
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variable (line 3), trying all possible values. When all variables are assigned (line 1),
the contribution of the complete assignment t is accumulated in a running count which
will eventually define the approximation Ẑ (line 2). However, branches which provide
a sufficiently small mass of probability (as estimated by Ub(t′)) are pruned and this
overestimation of the neglected mass is accumulated in U (line 5). Because pruning
may occur, eventually, Ẑ will be a lower bound of Z.

Theorem 1. Z∗ε terminates and returns an ε-approximation of Z.

Proof. The termination follows from the fact that Z∗ε explores a finite tree. We now
show that the algorithm always provides a ε-approximation. When the algorithm fin-
ishes, all the assignments have either been explored (line 2) and counted or pruned
(line 5). Since U is the sum of all the upper bounds on the mass of probability in all
pruned branches, we have that Ẑ + U ≥ Z. Initially, Ẑ = U = 0 and the invariant
Ẑ ≥ Ẑ+U

1+ε holds. The test at line 4 guarantees that this invariant still holds at the end of
the algorithm. Therefore Ẑ ≥ Z

(1+ε) . ut

While inspired by Depth First Branch and Bound (DFBB) that provides polynomial
space complexity, this algorithm behaves differently from it. In DFBB, for a fixed order
of exploration, when the local bound used for pruning (here Ub(t)) is tighter, less nodes
are explored. This property is lost in Z∗ε . Indeed, it is easy to imagine a scenario where
a tight bound Ub(t) will lead to more nodes being explored than using a weaker Ub′(t):
imagine that search has started and collected a mass Ẑ = 1 and U = 0 for either
bounds. Then comes a subtree of small size for which Ub(t) = ε while Ub′(t) � ε.
This subtree will be pruned by Ub(t) leading to U = ε but instead will be enumerated
with Ub′(t) preserving U = 0. In this context, the algorithm using the tight Ub(t) is not
allowed to prune anymore in the immediate future: if the forthcoming leaves all have
very small probability mass, it will be forced to visit all of them while the algorithm
using Ub′(t) preserved some margin and may be able to skip a significant fraction of
them.

Indeed, similarly to what happens with the α-β algorithm [20], the order in which
leaves are explored may have a major effect on the algorithm efficiency. Let us assume
that we have a perfect Ub(t) and that the leaves of the tree have exponentially decreas-
ing mass of probability, the ith visited leaf having a mass of εi−1, ε < 1 (such an
extreme distribution of probability mass may seem unlikely, but corresponds to linearly
increasing energies). In this case, the first leaf bears more mass than all the rest of the
tree and the Z∗ε algorithm would visit just one leaf. If the inverse ordering of leaves is
assumed, the algorithm will have to explore all leaves. It seems therefore important to
collect highest masses first. The polynomial space complexity of DFBB comes however
with strict constraints on the order of exploration of leaves and best-first algorithms that
could overcome this restriction would lead to worst-case exponential space complexity.
Interesting future work would be to use the recent highly flexible any-space Branch and
Bound algorithm HBFS [2] to improve the leaf ordering within bounded space.

However, contrary to what happens with optimization, even an exact upper bound
and a perfect ordering does not guarantee that only one leaf needs to be explored. If we
instead assume a totally flat energy landscape, with all leaves having the same energy,
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Z∗ε will have to explore a 1
1+ε fraction of the leaves just to accumulate enough mass in

Ẑ to prune.
Overall, it is important to realize that Z∗ε needs to achieve two goals:

1. collect probability masses on a potentially very large number of complete assign-
ments to compute a suitable approximation

2. exploit its upper bound to prune the largest possible part of the tree

The first goal could be achieved by existing algorithms producing an exhaustive list of
the m-best assignments [13] or all assignment within a threshold of the optimum (a
service that any DFBB-based optimization system provides for free). These algorithms
use bounds on the maximum probability instead of the total probability mass which
leads to stronger pruning and potentially higher efficiency than Z∗ε but do not provide
any guarantee since the number m of assignments that would need to be enumerated to
provide ε-approximation is unknown.

Because a potentially very large number of probability masses need to be collected,
a very fast search is required. To accelerate it, we equip Z∗ε with a very simple form of
“on the fly” caching: at any node during the search, we eliminate any variable which
is either assigned or of bounded degree as proposed initially for optimization [22], but
using sum-product variable elimination [11]. This caches all the influence of the elimi-
nated variable in a temporary (trailed) potential function. This means that the leaves of
the search tree will be sub-problems with bounded tree-width that may represent an ex-
ponential number of assignments. This naturally makes Z∗ε related to the vec weighted
counting algorithm, an anytime MRF counter based on w-cutsets (vertex cutset which
if assigned leave a w-tree) and variable elimination over w-trees [11].

The second goal is to prune the largest possible part of the tree search. However,
since the first goal requires a very fast search algorithm, using a powerful but computa-
tionally expensive bound is probably doomed to fail. For this reason, we have consid-
ered simple fast incrementally updated upper bounds by borrowing recent optimization
bounds [9] which are known to work well in conjunction with Depth First Search.

3.1 Bounds for guaranteed counting

For any MRF, we define a first upper bound on Z denoted by Ub1.

Z ≤ Ub1 =


 ∏

φS ,|S|<2

∑

t∈DS

exp (−φS(t))


 ·


 ∏

φS ,|S|≥2
exp

(
− min
t∈DS

φS(t)

)


Proof. By definition, we have that

Z =
∑

t∈DX


 ∏

φS ,|S|<2

exp (−φS(t)) ·
∏

φS ,|S|≥2
exp (−φS(t))




Trivially, exp (−φS(t)) ≤ maxt∈DS (exp (−φS(t))) = exp (−mint∈DS φS(t))
(by monotonicity). Applying this to the right term above, and exploiting the fact that
this term now does not depend on t, we get that:
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Z ≤


 ∑

t∈DX

∏

φS ,|S|<2

exp (−φS(t))


 ·


 ∏

φS ,|S|≥2
exp

(
− min
t∈DS

φS(t)

)


Since the set {φS , |S| < 2} contains only unary or constant functions, distributivity
allows to swap sum and product and the result follows. Notice that this bound can be
computed in linear time. ut

This bound can be strengthened by selecting a subset of all pairwise potentials
in Φ defining a partial spanning k-tree T ⊂ Φ. By applying a sum-product non se-
rial dynamic programming [11] on T ′ = T ∪ {φS ∈ Φ : |S| < 2}, we can
obtain the exact ZT ′ for this sub-MRF in polynomial time. We can multiply ZT ′ by
(
∏
φS∈Φ\T ′ exp(−mint∈DS φS(t))) and get a tighter upper bound on Z which we de-

note UbT :

Z ≤ UbT =


 ∑

t∈DX

∏

φS∈T ′

exp (−φS(t))




︸ ︷︷ ︸
Computed using non serial dynamic programming

·


 ∏

φS∈Φ\T ′

exp

(
− min
t∈DS

φS(t)

)


Proof. The proof is essentially similar to the previous one, and obtained by just replac-
ing the set {φS , |S| < 2} and its complement set {φS , |S| ≥ 2}, defining the ranges of
the products by the sets {φS ∈ T ′} (and its complement respectively). The first item
can be simply computed in O(nd2) time using non serial dynamic programming. ut

These bounds alone are very weak. To further strengthen them, we reformulate the
MRF using soft arc-consistencies [9] on its energy representation [1]. Soft arc con-
sistencies essentially shift energy from pairwise potential functions to unary potential
functions and eventually to the constant potential function φ∅ while preserving equiv-
alence. The result of this is an equivalent MRF (defining the same distribution) with
increased unary and constant φ∅ potential functions and pairwise potential functions
that satisfy mint∈DS φS(t) = 0. Besides strengthening the bounds, it removes the need
to compute the right term which is always equal to 1. Ub1 and UbT can then be com-
puted in O(nd) and O(nd2) instead of O(ed2) (extension to non pairwise potentials
would require the use of partial k-trees instead of trees and change the d2 into a dk+1).

In the rest of the paper we consider spanning trees and try both Existential Di-
rectional Arc Consistency (EDAC) and Virtual Arc Consistency (VAC) [9] as possible
ways of strengthening Ub1 and UbT .

4 Experimental evaluation and comparison

To evaluate the ability of the Z∗ε algorithm to provide guaranteed deterministic approx-
imations to Z, we implemented it on the top of the open source toulbar2 solver4.

4 http://www.inra.fr/mia/T/toulbar2
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The variable and value ordering used are the default weighted-degree and last conflict
variable ordering and the existential support value-ordering [9]. We enforce EDAC at
the root node and during search as usual for optimization. When VAC is used, it is
only enforced at the root node because of its computational cost. Instead of the k-way
branching described in Algorithm 1, we use a binary branching that either includes or
reject a chosen value a at each branching decision. At each node, all variables of de-
gree ≤ 2 are eliminated. The upper bound UbT uses a fixed maximum spanning tree
with maximum sum of mean cost after enforcing arc consistencies at the root node. Our
implementation is limited to pairwise potentials.

We compared it to different exact weighted counting approaches in terms of effi-
ciency and quality of our guaranteed approximation. Four different exact counters have
been considered. The first one is the already described vec exact counter [11]. The
second one is the exact SAT based weighted counting tool cachet [33]5. cachet
relies internally on the Zchaff SAT solver to enumerate models with non zero weight
and uses context-sensitive independence to cache intermediate counts. We also used
the ace 3.0 compiler [8], using the UAI competition executable provided in the ace
distribution (always using a pseudo-random generator seed of 0). ace computes a tree
decomposition and based on the obtained width may either perform tabular variable
elimination or encode to CNF and compile in d-DNNF using c2d. We also tested the
recent minic2d Sentential Decision Diagram (SDD) compilation package [28]. SDD
are more constrained than d-DNNF and may therefore lead to larger compiled forms
than d-DNNF, but since we do not need a compiled form and just the value of Z, we
used the -W option of minic2d that performs weighted counting without compilation
hoping to trade space for time. minic2d relies on its own internal SAT solver which
is provided as a compiled binary in the distributed minic2d package. Because some
of the compared solvers (vec, cachet) provide only a double floating representation
of Z (or its logarithm), all software has been used in double floating point mode.

All executions have been performed on one core of an Intelr Xeonr CPU E5-2680
v3 @ 2.50GHz (a Q4 2014 cpu) with a limit of 60 GB on RAM usage.

4.1 MRF to #SAT encoding

If ace uses its own internal optimized MRF to SAT encoding, both cachet and
minic2d require specific SAT encoding. Exact #SAT weighted counters use weighted
literals and define the weight of a model as the product of the weights of all literals
which are true in the model. They therefore rely on multiplicative potentials exp(−φS(t)).
To transform an MRF into a literal-weighted CNF formula with a weighted count equal
to the partition function, we use the ENC1 encoding of [8], originally described in [10].
This encoding is the CNF version of the so-called local polytope-based ILP encoding in-
troduced in [34] for MRFs and [21] for weighted CSPs [9]. For each variable i ∈ X , we
use one proposition di,r for each value r ∈ Di. This proposition is true iff variable i is
assigned the value r. We encode At Most One (AMO) with hard clauses (¬di,r ∨¬di,s)
for all i ∈ X and all r < s, r, s ∈ Di, as well as At Least One (f) with one hard

5 We thank Jean-Marie Lagniez, CRIL, France for providing us with a patched version of cachet
that can be compiled and run without any issue on recent systems.
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clause (
∨
r di,r) for each i. These clauses ensure that the propositional encoding allows

exactly one value for each variable in each model. For each potential φS , and each tuple
t ∈ DS , we have a propositional variable pS,t. For non-zero energies φS(t), we have
the literal pS,t with weight exp(−φS(t)). This represents the multiplicative potential to
use if the tuple t is used. ¬pS,t is instead weighted by 1, the identity for multiplication.
For every variable i ∈ S, we have a hard clause (di,t[i] ∨ ¬pS,t). These clauses enforce
that if tuple t is used, its values t[i] must be used. Then, for each variable i ∈ S and each
value r ∈ Di, we have hard clauses (¬di,r ∨

∨
t∈DS ,t[i]=r pS,t) that enforces that if a

value r ∈ Di is used, one of the allowed tuples t ∈ DS such that t[i] = r, wS(t) < k
must be used.

It is interesting to notice that for pure Constraint Satisfaction Problems (MRFs hav-
ing only 0/∞ potentials), it is known that Unit Propagation (UP) on this encoding
enforces arc consistency in the original CSP [3].

We apply obvious optimization steps, explicitly forbidding local assignments with
zero mass (sources of determinism). This encoding can be directly fed into minic2d.
Large problems however could not be encoded because minic2d only allows to ex-
press weights in a one-line list of maximum 100,000 chars in length6.

In cachet, weighted literals l are either such that l and l̄ receive a mass of 1 that
has no effect on final mass, or such that the weights of a variable and its negation sum
to 1. This is sufficient and convenient to express Bayesian nets because of their local
normalization constraint. For arbitrary MRFs, for every pS,t corresponding to a mass
m = exp(−φS(t)) we introduce another propositional variable nS,t with weights m
(positive) and 1 − m (negative) and a simple implication clause pS,t → nS,t. This
extra variable is connected to the rest of the problem only through this clause and can
therefore easily be eliminated, leading to a multiplicative factorm in models where pS,t
is true and 1 = m+ (1−m) in models where pS,t is false, as required.

4.2 Benchmarks

Two types of benchmarks have been used. The first type of benchmark is made of in-
stances of partition function computation appearing as sub-problems of binding affinity
computations on molecular systems defined by a protein interacting with a peptide or
an amino-acid. The 3D model of these molecular systems were derived from crystallo-
graphic structures of the proteins in complex with their ligands, deposited in the Pro-
tein Data Bank. Missing heavy atoms in crystal structures as well as hydrogen atoms
were added using the tleap module of the Amber 14 software package [6]. The molec-
ular all-atom ff14SB force field was used for the proteins and the ligands (peptides and
amino-acids). The molecular systems were then subjected to 1000 steps of energy mini-
mization with the Sander module of Amber 14. Next, a portion of the proteins including
amino-acids at the interface between the protein and the ligand as well as surrounding
amino-acids with at least one atom within 8 to 12 Å (according to the molecular system)
of the interface was selected.7

6 This parameter could not be changed, being in the non open-source part on minic2d.
7 Each of these systems requires extensive molecular modeling expertise to be properly defined.

We intend to make this benchmark together with the Z∗ε implementation available.
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To evaluate the effect of the strength of the upper bound on the algorithm efficiency,
we applied Z∗ε with ε = 10−3 on a series of 349 systems using the four different bounds.
For each system, the most complex partition function, defined on the compound system,
is computed. The largest problem has 22 variables and the largest domain size is 34. The
gap between our two bounds and the guaranteed approximation of Z determined by Z∗ε
is shown in Figure 2. The bound UbT is clearly stronger than Ub1, as expected.
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Fig. 2. Gap to Z: we represent log(Ub)− log(Ẑ) at the root node for Ub1 and UbT using EDAC
tightening (only negligible difference with VAC on these problems). The instances on the x axis
are sorted in increasing gap size for the strongest UbT bound.

We then compare the running times of Z∗ε using these 4 bounds in a cactus plot
in Figure 3. The best bound in terms of run-time is the lightest Ub1+EDAC bound
confirming that stronger, thus more expensive, bounds may quickly become counter
productive.

We represent the same information with the fastest Ub1+EDAC and two of the three
exact counting tools in Figure 4. We omit ace and minic2d. Indeed, ace was able
to solve only 17 problems within the time limit and failed on all remaining problems
with a memory exception (despite the explicit allocation of 60GB to the JAVA ma-
chine). minic2d was instead unable to model 294 systems out of the 349 because of
its previously mentioned limitation on the length of the weight line. On the remaining
55 problems, minic2d solved 7 problems in less than one hour.
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and vec. A point at (x, y) indicates that the number of solved problems is x if a deadline of y
seconds is imposed on each resolution.
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In the rest of the experiments we therefore use the Ub1+EDAC upper bound which
seems the most efficient bound. To see how the Z∗ε algorithm performs on other types of
problems, we used instances extracted from UAI and PIC’2011 challenge instances (PR
task)8 that use only pairwise potentials as a second set of benchmark. Using the same
value of ε = 10−3, we again compared Z∗ε with vec, cachet, ace and minic2d.

The results clearly show there is no single winner: except for cachet which is
always dominated by one of the other solvers, each algorithm may outperform oth-
ers. Specifically, the Z∗ε algorithm, despite its lack of sophisticated caching technology,
is able to outperform its competitors in various cases. Nevertheless, minic2d out-
performed Z∗ε on the Grid category (probably because of the combination of Boolean
variables and relatively small treewidth), itself outperformed by vec and further out-
performed by ace.

Instance Z∗ε minic2d ace vec cachet
smokers 10 < 0.01 0.663 < 0.01 < 0.01 0.264
smokers 20 < 0.01 312.825 < 0.01 < 0.01 332.168

rbm 20 7.46 T 3.376 16.17 941.14
rbm ferro 20 < 0.01 T 3.24 16.18 893.84

rbm 21 13.75 T 6.854 34.35 2041.64
rbm ferro 21 < 0.01 T 6.868 34.17 1975.78

rbm 22 33.75 T 14.411 72.78 T
rbm ferro 22 < 0.01 T 14.418 72.43 T

grid10x10.f10 66.32 < 0.01 < 0.01 < 0.01 T
grid20x20.f10 T T 13.316 2104.57 T
grid20x20.f15 T T 13.665 2099.24 T
grid20x20.f2 T T 13.603 2107.92 T
grid20x20.f5 T T 13.609 2102.32 T

GEOM30a 3 < 0.01 < 0.01 < 0.01 < 0.01 2.668
GEOM30a 4 7.66 78.604 < 0.01 < 0.01 43.77
GEOM30a 5 67.48 368.361 < 0.01 < 0.01 405.38
GEOM40 2 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01
GEOM40 3 < 0.01 < 0.01 < 0.01 < 0.01 3.62
GEOM40 4 1.42 0.58 < 0.01 < 0.01 616.59
GEOM40 5 12.67 12.801 < 0.01 < 0.01 828.50
myciel5g 3 37.2 T M T T
myciel5g 4 M T M T T
myciel5g 5 M T M T T
queen5 5 3 367.2 T 83.004 945.20 T
queen5 5 4 2423.67 T M T T

Table 1. Time results for UAI/PIC’2011 instances. Three different categories are represented:
Boltzmann machines (rbm) with attractive (ferro) and non attractive coupling, Grids, and graph
problems. Running-times are given in seconds. M : Memory Out (60GB), T : Time out (1h).
Bold is best.

8 http://www.cs.huji.ac.il/project/PASCAL
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Conclusion

Existing solvers providing deterministic guarantees for partition function computation
exploit two sources of efficiency. This first one is caching of local counts based on
context-sensitive independence [33], related to tree-decomposition. The other one is
determinism i.e., , the existence of zero probability assignments allowing to prune zero
probability mass sub-trees during search. This second source of efficiency will provide
significant speedups only when a significant fraction of the search space has 0 proba-
bility. Such distributions have very low entropy.

In this paper, motivated by the computation of statistical estimate of affinity be-
tween bio-molecules, we have proposed to build upon existing optimization technology
to provide a new source of pruning for partition function computation with determinis-
tic guarantees: a branch and bound-based schema equipped with upper bounds derived
from soft local consistencies. As existing SAT-based exact approaches, our algorithm
exploits determinism and a much simpler and less powerful form of caching than those
based on tree-decomposition. It is however able to prune regions of proven negligible
mass of probability and is therefore able to exploit relatively low entropy distributions
having a much wider support, including those with no determinism. The resulting al-
gorithm offers an adjustable deterministic guarantee on the quality of the computed
partition function and, despite its limited caching strategy, may already offer interesting
speedups compared to exact solvers.

Z∗ε includes two crucial ingredients to quickly gather large number of probability
masses: pruning based on very fast incremental upper bounds derived from optimiza-
tion bounds and on-the-fly sum-prod elimination. An important point is that these in-
gredients can be easily injected into existing SAT-based counters, including knowledge-
compilation based counters using SAT-solver traces. This could be achieved by defin-
ing counting upper bounds from existing Max-SAT bounds. These bounds have already
been related to soft arc-consistency bounds [23, 4, 24]. This should extend their range of
application to guaranteed approximate probabilistic inference on problems with limited
or no determinism.

From an affinity computation point of view, the next step is now to evaluate the ac-
tual empirical quality of the association constant estimation provided by the computed
ratio of partition functions. Beyond algorithmic approximations, the modeling may also
have important effects on the estimated value based on different rotamer discretizations,
relative positions of molecules in the complex or weights of different contributions in
the energy function. To pursue this target, we intend to use available databases that
provide experimental values of the association constant of various protein-ligand com-
plexes following various mutations on one of the partners. To keep the modeling to
a reasonable level of complexity, this will be preferably achieved on protein-protein
complexes.

Acknowledgments : We would like to thank Simon de Givry for his help with toulbar2.
We thank the Computing Center of Region Midi-Pyrénées (CALMIP, Toulouse, France)
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Prestwich, S., Schiex, T., Traoré, S.: Computational protein design as an optimization prob-
lem. Artif. Intell. 212, 59–79 (2014)

2. Allouche, D., De Givry, S., Katsirelos, G., Schiex, T., Zytnicki, M.: Anytime hybrid best-first
search with tree decomposition for weighted csp. In: Principles and Practice of Constraint
Programming. pp. 12–29. Springer (2015)

3. Bacchus, F.: GAC via unit propagation. In: Proc. of CP. pp. 133–147 (2007)
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Abstract. Molecular dynamics simulations, often combined with sim-
ulated annealing, are commonly used when calculating structural mod-
els of proteins, e.g. based on NMR experiments. However, one is often
faced with limited and sometimes insufficient information for determin-
ing a well-resolved 3D structure. In addition, the type of data available
for different proteins may vary: ranges for torsion angles, distance ap-
proximations, relative orientation of different molecular parts etc. We
are using whatever structural information is around, together with a
dynamic programming approach for searching the space of feasible con-
formations to rapidly determine 3D structures that are consistent with
the input constraints. Time-efficiency is important for good sampling
of the conformational space but also to replace expensive, complex and
time consuming experiments. Our approach benefits from having both
high level and low level descriptions of conformational features and con-
straints, and the possibility to infer new constraints from those that are
given.

Keywords: constraints, dynamic programming, protein modelling, zipping and
assembly

1 Introduction

Proteins are important biological macromolecules that consist of chains of amino
acid residues. Knowing the three-dimensional structures of proteins is important
in fully understanding the molecular basis for their function, but experimental
determination of protein structures can be difficult, costly and time-consuming.
Therefore there is a strong interest in using computational modelling methods
to obtain model proteins structures.

In our current work we are developing a computational modelling method
that can use whatever information is easy to obtain, which could be different
from case to case. In different projects there could be available information from
one or more kinds of experimental investigation, e.g. co-evolution information,
disulphide linkage analysis results secondary structure information, data from
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NMR experiments. With NMR, one can carry out many different kinds of ex-
periment in order to collect more data that can be used in determining a struc-
ture. However, doing this has a cost. For example some information about main
chain amide groups that are spatially close together can be obtained relatively
easily, compared with obtaining a full list of all nuclear Overhauser effect (NOE)
restraints that give distance estimates for pairs of atoms that are close together
in three-dimensional space. We aim to develop a protein modelling method that
can be used with whatever limited data sets are available in order to construct
satisfactory models without the need for extensive additional experiments.

The rest of this paper is organised as follows. In Section 2 we describe aspects
of protein structure that are needed to understand the methods described in the
paper, introduce zipping and assembly method which uses dynamic programming
in exploring a large confomational space, and describe the kinds of constraint
that are used when building models of protein main chains. In Section 3 we
describe the application of our method in modelling two proteins. We discuss
our own system, related work and some future directions in Section 4. The main
contributions of the work are summarised in Section 5.

2 Background

2.1 Protein structure

In this paper we are mainly concerned with modelling a protein’s main chain.
Part of a protein’s main chain is shown in Figure 1. A protein chain is able to
fold into its native conformation by rotation around two of the bonds in the
main chain, designated φ and ψ.

φ ψ

CA

C CA

O

N

CAC

C

O

O

N

N

i−1 i i+1

Fig. 1. The heavy (i.e. non-hydrogen) main chain atoms of three consecutive amino
acid residues are represented by spheres, and the covalent bonds between these are
represented by rods. Nitrogen and oxygen atoms (N and O) are shown in blue and red
respectively; carbon atoms are shown in grey. The central carbon atom (the Cα carbon,
labelled CA) is the main chain atom to which a side chain (not shown) is attached.
Rotation can occur around the bonds labelled φ and ψ.

If we assume standard bond lengths and angles [8], the task of predicting the
conformation of a protein’s main chain reduces to predicting values for all of the
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φ and ψ angles. Some φ and ψ combinations are energetically more favourable
than others, and some combinations are not possible at all since these would
result in atoms clashing into each other. Figure 2 shows the distribution of over
300 φ and ψ combinations taken from experimentally determined structures from
the Protein Data Bank (PDB)[3].

φ

ψ

Fig. 2. Combinations of values for φ and ψ torsion angles from a library of proteins
from the Protein Data Bank. The values of the φ and ψ angles are in degrees.

2.2 Zipping and assembly

In many approaches to modelling protein chains an entire chain is first con-
structed, then its conformation is repeatedly adjusted and evaluated in an at-
tempt to reach the protein’s native conformation. An alternative approach to
exploring the search space when constructing a model is to build models of
short fragments of protein chain independently of each other, and then to com-
bine these fragments into longer fragments. This is what is done in the zipping
and assembly method [7, 9].

Zipping and assembly is a dynamic programming algorithm that constructs
longer fragments from pairs of shorter ones. The principle is illustrated in Fig-
ure 3. The numbers along the bottom of the figure represent residue positions
within the chain. Celli,j represents the part of the protein chain being modelled
from residue position i to position j, for example the fragment from positions
8 to 10 is represented by Cell8,10. Each cell contains sets of fragments that are
candidates for modelling the conformation of part of the target protein. The
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cells on the lowest level (Cell1,1, Cell2,2, etc., shaded) each contain a set of al-
ternative conformations for the single amino acid residue at that position within
the cell. The cells on level two (Cell1,2, Cell2,3, etc.) contain sets of two-residue
fragments, each of which is formed by combining one residue conformation from
the the cell to the lower left, and one residue conformation from the cell to the
lower right. These are combined by superposing main chain atoms onto a refer-
ence peptide plane, as has been done previously by others e.g. [4]. Alternative
conformations for longer fragments are constructed by combining shorter frag-
ments from lower cells. Consider the five-residue fragment from positions 4 to
8. Possible conformations for this fragment will be stored in Cell4,8 cell, which
contains a question mark. These can be constructed by combining a fragment
chosen from the cell labelled a1 with one from the cell labelled a2, or combining
a fragment chosen from cell b1 with one chosen from cell b2, and so on. Similarly,
all cells in the diagram can be filled with fragment conformations that are the
result of combining a fragment chosen from one of the cells to the lower left of
that cell, with a fragment from a cell to the lower right. The fragments at higher
levels are successively longer than those at the levels below (this growth in chain
length is illustrated in the cells on the left edge of the figure). Finally, Cell1,10
at the apex will contain a set of possible conformations for the entire protein
(consisting of 10 residues in this toy example).

level 1

level 2

level 3

level 4

level 5

level 6

level 7

level 8

level 9

level 10

Cell
8,10

1 2 3 4 5 6 7 8 9

?

a1 d2

c2

b2

a2d1

c1

b1

10

Fig. 3. Zipping and assembly of a protein with 10 residues.

Claims made for the zipping and assembly method include [7]:

— its local-first-global-later search explains quick folding, and avoidance of vast
stretches of conformational space (“local” here refers to local in sequence);

— it reflects the parallel nature of physical kinetics;
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— it captures the relationship between contact order (whether pairs of amino
acid residues that are close together in 3-D space also tend to be close to
each other along the protein chain, or tend to be distant from each other
along the protein chain) and folding rate;

— it identifies slow- and fast-folding proteins, and slow- and fast-folding routes.

2.3 Conformational constraints

The constraints used in this work include upper and lower distance bounds
between pairs of atoms. Distance constraints can come from a variety of sources.
If it is know that two cysteine residues form a disulphide bond, then their atoms
must be sufficiently close. Elements of protein secondary structure (α helices and
strands in a β-sheet) are associated with tight distance constraints between main
chain nitrogen and oxygen atoms that are involved in hydrogen bonds. From
NMR experiments, the HN-HN distance constraints from NOEs determine the
extent of the α helices as well as the relative position and orientation of strands
in a β-sheet. No other short HN-HN distances are expected in a protein; these
NOEs are therefore providing constraints with a very high information content.
This allows, in contrast to regular structure calculations from NMR data, to rely
on a very low number of constraints.

There can be upper and lower bounds on the values of main chain torsion
angles. These can come from knowledge about the protein’s secondary structure
(e.g. based on HN-HN NOEs from NMR experiments) or torsion angle ranges
predicted by TALOS+ from chemical shifts data [13].

The model structure ought to be consistent with whatever information there
is about the protein (see Section 3). Further, the protein should be free from
steric clashes, i.e. the chain should not fold in a way that causes one part of the
protein to overlap with another part.

3 Case studies

To demonstrate the use of zipping and assembly with constraints, we have at-
tempted to reconstruct the structure of proteins using only their amino acid
residue sequences, secondary structure information (the extents of α-helix re-
gions and information about anti-parallel bridges), and disulphide bond pairings
as starting information.

The modelling process and results are presented here for two proteins: human
p8MTCP1 and human defensin β-defensin 6. Both of these proteins have three
disulphide bonds. Human p8MTCP1 (68 amino acid residues) has three α-helix
regions, while human defensin β-defensin 6 (45 amino acid residues) has a mainly
β-sheet structure with several anti-parallel bridges.

The modelling program starts by filling each cell on level 1 of the zipping
and assembly data structure (Figure 3) with φ and ψ angle combinations from a
library of real proteins taken from PDB database (Figure 2). For those residues
that have angle constraints, the set of φ and ψ angle combinations is filtered. The
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modelling program then proceeds to generate candiate models in each cell in level
2 and above in the zipping and assembly data structure. Distance constraints
and steric overlap checks are used to filter the solutions that are put into each
cell. The user can specify how many solutions should be created in each cell; in
the modelling exercises described in this section, 1000 fragments are created in
each cell.

3.1 Human p8MTCP1

The structure of human p8MTCP1 has been determined experimentally by NMR
[PDB entry: 2HP8] [2] (Figure 4). This high level information is shown in Figure
5. From these facts, a large set of lower level distance and angle constraints can
be derived. These are summarised in Figure 6.

28

7

12

17

38

39

50

Fig. 4. Disulphide bonds in human p8MTCP1 (Protein Data Bank entry 2HP8). A
disulphide bond can be formed between the sulphur atoms of a pair of spatially adjacent
cysteine residues. The ribbon cartoon represents the main chain of human p8MTCP1.
There are 7 Cys residues (side chains shown as ball-and-stick), 6 of which form three
disulphide bonds (Cys7-Cys38, Cys17-Cys28, Cys39-Cys50).

If we have a constraint that Cα atoms of residues i and j must be within
distance d from each other, this places upper distance bounds on atoms in the
residues between i and j. The expected separation between the Cα atoms of
two consecutive residues is 3.8 Å and the triangle inequality can be used to
infer additional distance constraints involving the residues in between i and j.
Prolog code for propagating distance constraints to lower cells in the zipping
and assembly data structure is shown in Figure 7, and the result of applying
this code is illustrated in Figure 6.
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residue(1,’MET’).

residue(2,’PRO’).

residue(3,’GLN’).

residue(4,’LYS’).

residue(5,’ASP’). % etc.

disulphide_bond(7,38).

disulphide_bond(17,28).

disulphide_bond(39,50).

alpha_helix(8,20).

alpha_helix(29,39).

alpha_helix(48,62).

Fig. 5. Prolog facts describing structural features of human p8MTCP1.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68

S

S S

Fig. 6. Constraints used in modelling human p8MTCP. The yellow cells with letter “S”
represent three disulphide bonds that provide tight distance constraints between pairs
of residues at positions (7, 38), (17, 28) and (39, 50), and weaker distance constraints
between pairs of residues represented by the yellow cells. Proline residues at positions
2, 6 and 43 have tight constraints on the range of possible values for their φ torsion
angle (green cells). The helical regions have constraints on possible φ and ψ angle
combinations (pink cells on level 1), and tight distance constraints between the main
chain oxygen atom of residue i and the main chain nitrogen atom of residue i+4 (pink
cells on level 4).
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infer_upper_bounds :-

upper_distance_bound((A,’CA’),(B,’CA’),Distance),

between(I,A,B),

between(J,I,B),

MustNotBeMoreThan is (((B - A) - (J - I)) * 3.8) + Distance,

CannotBeMoreThan is (J - I) * 3.8,

MustNotBeMoreThan < CannotBeMoreThan,

assert_upper_bound((I,’CA’),(J,’CA’),MustNotBeMoreThan),

fail.

infer_upper_bounds.

Fig. 7. Prolog code for propagating distance constraints to lower cells.

The zipping and assembly method was run generating 1000 fragments in
each cell in the data structure. Of the 1000 models built for the entire chain,
the most similar model to the experimentally determined structure had a root
mean square distance of 2.6 Å over all Cα atoms (Figure 8). Regions of greatest
difference are close to the unconstrained ends of the chain. Comparing the 1000
models with each other the main differences are the orientation of the third helix
which is only anchored to the second helix by a disulphide bond near one end,
and the placement of the unconstrained residues near the ends of the chain.

Fig. 8. Main chain of modelled human p8MTCP, built using knowledge of the extents
helical regions and its disulphide bridges superposed on the experimentally determined
structure [PDB: 2HP8]. The colour gradient allows the chains to be followed easily
from the N-terminal (residue 1, blue) to the C-terminal (residue 68, red).
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3.2 Human β-Defensin 6

The structure of human β-defensin 6 has been determined experimentally by
NMR [PDB entry: 2LWL] [6]. This structure contains four anti-parallel bridges
(Figure 9).

Fig. 9. Antiparallel bridges in human β-defensin 6 inferred from HN-HN NOEs.

Prolog rules are used to derive distance and torsion angles constraints from
facts about the protein’s structure (Figure 10). Distance constraints due to disul-
phide and anti-parallel bridges are illustrated in Figure 12.

residue(1,’PHE’).

residue(2,’PHE’).

residue(3,’ASP’).

residue(4,’GLU’).

residue(5,’LYS’). % etc.

disulphide_bond(6,33).

disulphide_bond(13,27).

disulphide_bond(17,34).

alpha_helix(4,8).

antiparallel_bridge(12,34).

antiparallel_bridge(14,32).

antiparallel_bridge(22,35).

antiparallel_bridge(25,33).

Fig. 10. Prolog facts describing structural features of human β-defensin 6.

Initially we were unable to obtain models that had the protein’s native fold.
However, there was additional information implicit in the high level description
of structural features that could be used to infer some additional constraints.
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33
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6

17

Fig. 11. The large grey arrow represents a strand in a β-sheet. Cα atoms are repre-
sented by numbered circles. Consecutive residues 33 and 34 lie within the strand, and
both are involved in disulphide bonds (shown in yellow) with residues 6 and 17, re-
spectively. This situation places upper and lower distance constraints between residues
6 and 17.

Specifically, within a strand in a β-sheet the side chains of consecutive residues
are on alternate faces of the sheet, i.e. side chains of adjacent residues are oriented
in opposite directions. In the case of human β-defensin 6, the residues at positions
33 and 34 are both cysteine residues involved in disulphide bonds. Since the side
chains of residues 33 and 34 are oriented away from each other, the Cα atoms of
their disulphide bond partners (residues 6 and 17) are expected to be between
13 Å and 15 Å apart. This situation is illustrated in Figure 11, and a rule for
inferring these constraints has been implemented in Prolog (Figure 13).

The most similar model to the experimentally determined structure had a
root mean square distance of 1.9 Å over Cα atoms in the core region spanning
residues 6 to 35 (Figure 14). The greatest differences were the unconstrained
ends of the chain. Superposed Cα traces of 50 model structures show that the
models agree well in core, but vary considerably in their unconstrained regions
near the ends of the chain (Figure 15).

4 Discussion

The system described in this paper is implemented in a combination of C and
Prolog. The zipping and assembly method is implemented in C. Prolog is used
for representing structural features at a high level (Figures 5 and 10), for gen-
erating low level distance and angle constraints from high level descriptions of
structural features, for propagating distance constraints “downwards” in the zip-
ping and assembly data structure (Figure 7), and for reasoning about high level
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1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45

S

S

S

A

A

A

A

Fig. 12. Distance constraints due to disulphide and anti-parallel bridges mapped onto
cells in the zipping and assembly data structure. Fragments generated in a particular
cell are checked against the constraints in that cell, and only feasible fragments are
retained. Disulphide (S) and anti-parallel (A) bridges in human β-defensin 6 give dis-
tance constraints between residue pairs indicated by the yellow and cyan cells. The
green cells represent distance constraints imposed on residues 6 and 17, and nearby
residues, by the situation shown in Figure 11.

structural information in order to infer additional constraints (Figure 13) that
can be crucial in constructing a satisfactory model.

The constraints in the green cells in Figure 12 cannot be inferred from low
level distance and angle constraints. These constraints depend on expert knowl-
edge about protein structure that has been encoded as a Prolog rule (clause 2
of disulphide distance constraints/0 in Figure 13).

The ability to propagate constraints downwards in the zipping and assembly
data structure is important since this can improve execution times substantially,
and sometimes makes it possible to find solutions that would not otherwise be
found, due to many unpromising fragments “clogging up” the lower cells in the
zipping and assembly data structure.

4.1 Related work

Several examples of other work on protein modelling where constraint-based
methods are used are discussed here.

The PSICO system [10] constructs protein models that minimise constraint
violations, where many thousands of distance constraints from NMR experiments
are taken into consideration. In the work described in this paper, we attempt to
build models using much smaller sets of constraints (roughly two orders of mag-

109



disulphide(A,B) :- disulphide_bond(A,B).

disulphide(A,B) :- disulphide_bond(B,A).

in_antiparallel_bridge(X) :- antiparallel_bridge(X,_).

in_antiparallel_bridge(X) :- antiparallel_bridge(_,X).

disulphide_distance_constraints :-

disulphide_bond(A,B),

assert(lower_distance_bound((A,’CA’),(B,’CA’),4.0)),

assert(upper_distance_bound((A,’CA’),(B,’CA’),7.0)),

fail.

disulphide_distance_constraints :-

disulphide(A,B),

disulphide(C,D),

1 is C-B,

in_antiparallel_bridge(B),

in_antiparallel_bridge(C),

assert(lower_distance_bound((A,’CA’),(D,’CA’),13.0)),

assert(upper_distance_bound((A,’CA’),(D,’CA’),15.0)),

fail.

disulphide_distance_constraints.

Fig. 13. Prolog code for inferring distance constraints between disulphide bond part-
ners and adjacent residues. The first clause of disulphide distance constraints/0

asserts upper and lower distance constraints between the Cα atoms of the
two residues that are involved in the disulphide bridge. The second clause of
disulphide distance constraints/0 tests whether residues B and C are adjacent in
the protein chain, are both present in a strand and asserts upper and lower constraints
on the distance between the Cα atoms of the disulphide bond partners of residues B
and C.

Fig. 14. Main chain model of human β-defensin 6 superposed on the main chain of
experimentally determined structure from PDB entry 2LWL.
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Fig. 15. Cα traces of 50 models of human β-defensin 6. The structures of the core are
in good agreement, and the terminal regions are dynamic.

nitude smaller). In addition to distance constraints, we make use of constraints
on torsion angle values.

Dal Palù et al. [5] use a CLP-based method to model proteins using fragment
assembly. In their work they use a reduced representation of amino acid residues
in which each residue is represented by its Cα atom and the centroid of its side
chain. By using all main chain heavy atoms in the work presented here, it is
easier to directly use constraints on the values of φ and ψ torsion angles that
are predicted from chemical shifts in NMR experiments.

Backofen and Will [1] use a constraint-based approach to a lattice model of
protein folding, where a sequence of hydrophobic and polar “amino acid residues”
are folded onto a regular grid. The zipping and assembly method was first de-
scribed in the context of lattice models [7, 9]. While lattice models are a gross
over-simplification of the real protein folding problem, they provide a conve-
nient framework for experimenting with search strategies and simplified scoring
functions [11].

Traoré et al. [15] address a different problem where the aim is to select
which side chains can be attached to a rigid protein main chain, taking into
consideration predicted conformations of these side chains and pairwise energies
between side chains. In contrast, the work described here attempts to model the
main chain.

4.2 Future work

We are extending our program so that longer fragments that are consistent with
given constraints, taken from a library of known protein structures, can be used
directly when modelling, thus making better use of known structural information
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that is present in the Protein Data Bank. Instead of starting with only the
conformations of single residues in the cells in level 1 of the zipping and assembly
data structure, we shall then be able to place some longer fragments directly
into cells at higher levels. Doing this should both improve the performance of
the program (the current program typically takes several minutes to run on a
laptop) and to improve the quality of the models that are constructed.

Scoring functions should be added to evaluate and filter the suggested frag-
ment conformations in the higher cells of the zipping and assembly data struc-
ture. Currently any fragment that does not violate the given constraints is ac-
cepted. We would expect better results by scoring and selecting fragments.

So far our focus has been on modelling protein main chains, and we have not
placed side chains carefully. Side chain modelling could be carried out within the
zipping and assembly framework, or in a separate modelling step that follows
construction of the main chain (e,g, [14]).

We are working to improve the performance and memory usage of the pro-
gram. Execution time is not only related to protein length (assuming sufficient
main memory), but is also affected by “contact order” [12]. High contact order
implies constraints “higher” in the ZAM data structure (Figure 12); low contact
order structures (with “lower constraints”, Figure 6) are easier and faster to
model.

5 Conclusions

We have implemented a method for modelling protein main chains that uses
high level declarative descriptions of protein features as its starting point. Lower
level distance and angle constraints can be generated automatically from these.
Declarative Prolog rules are used to propagate distance constraints so that un-
promising solutions are pruned early. The zipping and assembly method for
exploring the vast conformational space has several benefits [7]. We have imple-
mented a zipping and assembly method that makes use of given and derived
constraints to guide the search towards feasible solutions. Expert structural
knowledge that can be crucial in finding satisfactory solutions is expressed as
declarative Prolog rules that are used to infer additional constraints.
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Abstract. Predicting protein-protein complexes (protein docking) is an
important factor for understanding the majority of biochemical pro-
cesses. In general, protein docking algorithms search through a large
number of possible relative placements of the interacting partners, filter-
ing out the majority of the candidates in order to produce a manageable
set of candidates that can be examined in greater detail. This is a six-
dimensional search through three rotational degrees of freedom and three
translational degrees of freedom of one partner (the probe) relative to
the other (the target). The standard approach is to use a fixed step
both for the rotation (typically 10o to 15o) and the translation (typically
1Å). Since proteins are not isotropic, a homogeneous rotational sampling
can result in redundancies or excessive displacement of important atoms.
A similar problem occurs in the translational sampling, since the small
step necessary to find the optimal fit between the two molecules results
in structures that differ by so little that they become redundant. In this
paper we propose a constraint-based approach that improves the search
by eliminating these redundancies and adapting the sampling to the size
and shape of the proteins involved. A test on 217 protein complexes from
the protein-protein Docking Benchmark Version 5 shows an increase of
over 50% in the average number of non-degenerate acceptable models
retained for the most difficult cases. Furthermore, for about 75% of the
complexes in the benchmark, computation time is decreased by half, on
average.

Keywords: protein docking; geometric search; constraints

1 Introduction

Protein interactions are crucial in any living organism, since proteins make up
most of the biochemical machinery of the cell. Proteins are also the main product
of genes and thus lie at the base of the phenotypic expression of the genome and
of all metabolism. This is why understanding protein interactions is so important
for both theoretical and practical reasons. From the elucidation of biochemical
mechanisms to medicine and drug design, predicting how proteins fit together
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provides useful information. Given the difficulty of studying protein-protein in-
teractions experimentally and the progress in high-throughput methods of deter-
mining individual protein structures [5], modelling protein interactions from the
known structures of the interacting partners is bound to remain an important
tool for biochemical and medical research.

There are two main approaches to predicting protein-protein complexes, or
protein docking. Some algorithms use local search or stochastic sampling meth-
ods, such as genetic algorithms [15] or simulated annealing [2], to maximize a
scoring function that estimates how favourable the interaction is. This function
takes into account several factors such as solvation effects, entropy and electro-
statics, which limits the configurations that can be sampled during the search.
This is why most docking algorithms use geometric complementarity as a first
filtering criterion [1, 7, 11, 12, 14], postponing a more detailed evaluation to a
second stage, limited to a smaller set of selected candidates. This allows a sys-
tematic search through a very large number of possible configurations – on the
order of 1015 or more – by rotating one of the proteins, the probe, relative to
the other, the target, and exploring all translations for each orientation in small
steps. Each configuration is then evaluated according to geometric complemen-
tarity in order to retain the best candidates. This relatively smaller number of
candidates – 103 to 104 – is then scored in more detail and ranked in the eval-
uation step. This paper focuses on optimizing the search in the filtering step.
We use the BiGGER (Bimolecular complex Generation with Global Evaluation
and Ranking) docking program, which has a geometric search algorithm based
on constraint programming techniques. BiGGER uses constraint propagation to
speed up the translational search by eliminating the majority of unproductive
configurations, such as those with forbidden overlaps or insufficient surface con-
tact [8] and also to restrict the translational search according to predicted or
observed points of contact between the interacting partners [9]. In this paper,
we describe the application of the same constraint processing ideas to optimize
the search through the rotational space and the selection of the best candidate
models by imposing constraints on the redundancy of the candidates.

1.1 Uniform rotational search

The standard approach for the rotational search in exhaustive search docking
algorithms is to generate a set of uniformly distributed rotations by rotating the
probe molecule around the three orthogonal axis in a constant step, typically
ranging from 6o to 15o. Although the implementation details vary, one usual
method is to sample the combinations of rotations around the x, y and z axis. If
we rotate in steps of 15o, this would mean a total of 12 × 24 × 24 orientations,
since there are 24 steps of 15o around each axis but, for one axis, we would only
need half a turn to avoid repeating orientations. This results in some degenerate
orientations and can be improved by selecting 12×24 uniformly distributed axes
and then rotating 23 steps around each one (the 0o and 360o rotations around any
arbitrary axis all lead to no rotation) and then adding the original orientation,
for a total for 12× 24× 23 + 1 is 6625 orientations. This is the default uniform
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rotational search algorithm used in BiGGER. It starts by creating 24×24 = 576
points uniformly spread on the surface of a sphere of radius 1, using the spiral
method [13], and then selecting all those with z ≥ 0 to define 288 rotation axes
1 Each rotation axis is then used to generate 23 quaternions specifying the 23
different rotations of 15o around the axis, and finally the original orientation (no
rotation) is also kept, for the total of 6625 orientations.

1.2 The search dilemma

While a finer sampling of both the rotation and translation space is desirable in
order to find the best fit between the two proteins, besides the increase in com-
putation time, it also leads to a larger number of very similar configurations.
This, in turn, increases the chance that incorrect configurations push all accept-
able candidates out of the set of retained models. However, a coarser sample
may result in missing the most favourable ways of fitting the proteins and thus
not find any acceptable models with a good enough geometric fit to be retained
in the filtered set. It is this dilemma that motivates our addition of redundancy
constraints. With the method described below, we adapt the rotation sampling
to the size and shape of the protein in order that the atom displacement between
neighbouring orientations is as close to uniform as possible. This gives us a better
control of the trade-off between searching too many or too few orientations. In
addition, we constrain the set of retained models to avoid keeping models that
are too similar. This way we can do a translation search in small steps of 1Å, in
order to better optimize the geometrical fit, but also mitigate the crowding out
of acceptable candidates by groups of redundant models.

2 Method

One possibility for optimizing the rotation sampling is to take into account the
shape of the probe protein and apply a different constraint to the generation
of the rotations. Instead of requiring a constant step, it would be better to
require that the maximum displacement of the atoms from one rotation to its
nearest neighbour be constant. This would result in a distribution of orientations
that is heterogeneous in the angular step but more homogeneous in the atomic
distances since proteins are not spherical and can have highly irregular shapes.
Another possibility is to prune the rotations searched to reduce the number of
orientations used. The rationale for this approach is that, for adequate results,
smaller or more globular proteins should need a smaller number of orientations
than larger or more irregularly-shaped proteins. The following subsections detail
each of these approaches.

1 Or 289 rotation axes, in some previous implementations, depending on exactly how
the points are spread with respect to this cutoff for the hemisphere.
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2.1 Redundancy in retained models

The standard approach to the filtering stage of the docking process is to retain
the set of models with the highest scores for the scoring function used in this
stage. Given the large search space, this function must be inexpensive to eval-
uate, and is generally based on estimates of the contact surface [4]. This is the
current procedure in BiGGER. However, retaining the highest scoring models
can result in redundancies because the step size in the translation search, which
in BiGGER is 1Å, can be small enough to result in multiple nearly identical
models. On the other hand, a larger translation step could result in missing the
most favourable configurations. One way of solving this dilemma is to restrict
the models retained so that, of two sufficiently similar models, only the highest
scoring one is kept. This consideration, along with the asymmetry of the probe,
lead us to the following constraints for reducing redundancy.

2.2 Defining the constraints

To prevent redundancy in rotation, we define the distance between two rotations
as:

Definition 1. Distance between rotations
Let S be the set of N points with coordinates c1, c2, ..., cn and ρ1 and ρ2

two rotations. The distance between rotations ρ1 and ρ2 with respect to S is the
largest distance between the pair of images for each point:

distS(ρ1, ρ2) = max
ci∈S
|ρ1(ci)− ρ2(ci)|

The rotation constraint that reduces the angular redundancy:

Constraint 1. Rotation redundancy constraint
Given a set of points S defining the shape of the probe, a distance parameter

δ specifying the smallest non-redundant displacement, and a set R of rotations,
then:

∀ρi, ρj 6=i ∈ R,distS(ρi, ρj) > δ

Evidently, this constraint is trivial to fulfil with an empty set of rotations.
However, we also want to cover all the possible orientations of the probe as
well as possible. So the goal is to find the largest set of rotations that respect
constraint 1.

To reduce redundancy in retained models, we also add the following con-
straint:

Constraint 2. Model redundancy constraint
Let M be the set of retained models, where each model mt,ρ is determined by

the translation vector t and rotation ρ. Given a radius r specifying the redun-
dancy neighbourhood, then:

∀mti,ρi ,mtj ,ρj ∈M,ρi = ρj =⇒ |ti − tj | > r
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2.3 Implementing the constraints

To speed up the calculation, we use a set of 20 atoms to represent the protein
shape. These atoms are selected by first picking the atom farthest from the cen-
tre and then iteratively picking the atom with the largest distance to the closest
atom in those previously picked. This is the set of points over which rotation
distances will be calculated. We then create a list of uniformly distributed rota-
tions with a 7.5o step for a total of 24 × 48 × 47 + 1 = 54145 rotations. From
this oversampling of the rotational search space we pick the original orientation
as the first element of the set of the selected rotations. Then, iteratively, of all
rotations for which the minimum distance to any in the selected set is larger than
δ, we add the one with the smallest minimum distance to the selected set. We
repeat this until no rotation is left that has a minimum distance to the selected
set that is larger than δ. This method gives us a distribution of rotations that
is more homogeneous in atomic displacement, adapted both to the shape and to
the size of the protein, resulting in fewer orientations for smaller proteins and
more orientations for larger proteins. For the work related here, the δ value for
this rotation constraint was 6Å.

Since this is a greedy optimization, it does not guarantee the maximum pos-
sible number of rotations or the ideal distribution. However, it is fast. Building
the set of rotations takes from a few seconds to a few minutes for each complex,
less than 1% of the total docking time. Nevertheless, we are working on improv-
ing the set of rotations, both by improving the generation algorithm to optimize
the distribution of rotations and to fine-tune the δ value.

The model redundancy constraint is implemented by storing a temporary
list of the best candidate models during the translational search for a given
orientation of the probe. Once the translational search for that orientation is
complete, the sorted candidates are examined starting from the model with
the largest surface contact and, whenever the program adds one model to the
final list of selected models, it removes all models in the temporary list for
which the translation vector is within 2.5Åof the inserted model in all three
coordinates. This parameter also needs to be optimized by experimenting with
different values, as well as the decision to use a cubic neighbourhood instead of
a spherical one. These adjustments are still work in progress.

2.4 Benchmark tests

To test our method, we used the protein-protein Docking Benchmark Version
5 [16]. This is a benchmark of 230 cases of unbound docking of protein complexes.
However, these 230 examples only span 225 protein complexes, as five of the 230
examples are additional binary complexes drawn from some large complexes in
the pool of 225. Of these 225 complexes, in 217 the length of the probe was
distributed with an approximately normal distribution with an average of 55Å
and a standard deviation of 13Å, and ranging from 25Å through 86Å. The length
of the probe was measured as the largest distance between any pair of atoms in
the protein. This is an important measure because it affects both the number
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of orientations necessary to adequately sample the rotational space and the size
of the translational search space. In the other eight complexes the probe length
was spread out from 98Å to 141Å. This sparse set of a few but extreme outliers
caused difficulties in aggregating the results as a function of the length of the
probe, which was necessary for judging the effects of the constraints in different
conditions. For this reason, we ended up rejecting these eight complexes, leaving
us with a benchmark set of 217 different complexes, each involving two proteins.

The protein-protein Docking Benchmark provides the unbound structures
and the target complexes recreated by rigidly fitting the unbound partners to the
known complex structure. These were the target complexes we used to evaluate
the performance of the docking algorithm. In some cases, there are significant
conformational changes between the bound and unbound proteins. Using these
target complexes provided by the benchmark, we can evaluate the rmsd2 of the
docking predictions without adding the irreducible remaining error due to the
conformational changes the proteins undergo when interacting, which can be as
high as 8Å. Nevertheless, these conformational changes still add to the difficulty
of the unbound docking, since we are trying to predict the correct fit of proteins
that are not in the ideal conformation for fitting together, as would generally be
the case in a real application. In addition to using the unbound conformations,
we also rotated each probe protein randomly before docking. Other than the
constraints described here, the docking predictions were run with the default
parameters used by BiGGER and retaining a set of 5000 models.

To evaluate the results, we considered a model to be acceptable if the rmsd
value computed for the probe was below 10Åand the rmsd value for the atoms
at the interface was below 4Å. The interface is the set of atoms within 5Å of any
atom of the other partner. These are criteria used in the CAPRI programme for
assessing predictions of protein interactions [6].

3 Results and discussion

Figure 1 shows the relative effect of using both redundancy constraints compared
to the base search algorithm of uniform rotation sampling and not discarding
redundant models. These relative values are computed dividing the values for
the docking runs with the redundancy constraints by the respective values for
the base docking runs. The lines are smoothed using a Gaussian kernel with 5Å
of standard deviation for each data point. The failure rate is the proportion of
complexes for which no acceptable model was retained in the final set of 5000
candidates. The relative failure rate is always below one, meaning that the redun-
dancy constraints result in a lower failure rate than the corresponding docking
runs using the base algorithm. The relative number of non-redundant acceptable
models is nearly always higher than one, which shows that the redundancy con-
straints increase the average number of acceptable models retained in the final
set. The relative time is below one for the first three quartiles, meaning that, in

2 The square root of the mean of the squared atomic deviations, in Ångstrom
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75% of the cases, the number of orientations with the fixed displacement of 6Åis
smaller than the default number of orientations. However, since they are better
distributed, even with a smaller number of orientations to search the results are
better than the results of the base method. For larger probe sizes, the number
of rotations is larger than 6625, the default used by BiGGER. In this quartile,
computation times can increase significantly. However, the average number of
acceptable models retained also increases significantly, suggesting that the base
set of 6625 orientations was inadequate for larger probes.

Fig. 1. The lines show the relative effects of the redundancy constraints on failure rate,
average number of non-redundant acceptable models retained and computation time
as a function of probe length. The values are in proportion to the values obtained with
the base algorithm. The shaded curve shows the length distribution of the probes in the
benchmark examples, divided into quartiles. All plots were smoothed using a Gaussian
kernel with σ = 5Å.

Table 1 shows the values comparing, for each quartile, four different cases.
The Base case is the basic BiGGER algorithm without any redundancy con-
straints. The Models case uses Constraint 2 to prevent redundancy on the models
retained. Rotations uses Constraint 1 to adapt the set of rotations to the shape
and size of the probe, so that no two different orientations result in a maximum
atomic displacement below 6Å. Finally, Full uses both constraints. The results
are aggregated by each quartile of the distribution of probe lengths, with the
last column showing the averages for all 217 test complexes. Each value is the
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average value plus or minus the standard deviation for the average estimated by
bootstrapping [3] with 10,000 replicas .

Table 1. Effect of redundancy constraints, by quartile

Average number of non-redundant models by complex
Quartile 0-25% 25-50% 50-75% 75-100% All

Base 13.0± 2.7 4.7± 0.7 3.8± 0.7 2.6± 0.4 6.1± 0.8
Model 18.9± 3.8 6.8± 1.2 5.1± 0.9 3.4± 0.5 8.6± 1.1
Rotation 9.3± 1.2 4.1± 0.5 3.6± 0.5 3.1± 0.6 5.1± 0.4
Full 14.6± 1.8 5.9± 0.8 5.3± 0.7 4.1± 0.7 7.5± 0.6

Percentage rate of failed predictions
Quartile 0-25% 25-50% 50-75% 75-100% All

Base 9%± 4% 13%± 5% 28%± 6% 33%± 6% 21%± 3%
Model 9%± 4% 7%± 4% 15%± 5% 24%± 6% 14%± 2%
Rotation 9%± 4% 11%± 4% 22%± 6% 37%± 7% 20%± 3%
Full 5%± 3% 13%± 5% 20%± 5% 28%± 6% 17%± 3%

Average computation time by complex (hours)
Quartile 0-25% 25-50% 50-75% 75-100% All

Base 0.7± 0.0 1.2± 0.1 1.4± 0.1 2.7± 0.2 1.5± 0.1
Model 0.7± 0.0 1.2± 0.1 1.5± 0.1 2.8± 0.2 1.5± 0.1
Rotation 0.2± 0.0 0.5± 0.0 0.8± 0.1 2.9± 0.3 1.1± 0.1
Full 0.2± 0.0 0.6± 0.0 0.9± 0.1 3.2± 0.4 1.2± 0.1

This table compares the basic BiGGER algorithm with docking imposing the constraint
on model redundancy, the constraint on rotation redundancy and both. The results are
aggregated by quartile of the distribution of probe lengths. The last column shows the
aggregate values for all 217 test complexes.

The number of non-redundant complexes retained in the final set of 5000 can-
didates is relevant for estimating the difficulty of identifying the correct models
within this set. Other factors being equal, after the second stage of evaluating
this set with a more detailed scoring function, the greater the number of ac-
ceptable models present the easier it should be to pinpoint the correct complex
structure. Looking at the four quartiles in the distribution of probe lengths,
we can see that docking small probes is easier, resulting in around 10 to 20
non-redundant acceptable models. The failure rate, which is the percentage of
complexes for which no acceptable model was retained in this final set of 5000,
is also lowest for smaller probes. Thus, in this quartile, the most significant gain
by combining the two constraints is in computation time, which is reduced to
nearly a quarter of the time for the unconstrained docking. Using the rotation
redundancy constraint alone can give us this performance improvement but re-
sults in a lower average number of acceptable models, although the failure rate
is not significantly different.
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On the second quantile, the results are similar, differing only in that the time
decrease is less marked, at around 50%, and the increase in the average number
of acceptable models seems to be greater, though still not significant. On the
third quartile, however, the average number of non-redundant acceptable mod-
els retained is significantly higher for the dockings with both constraints than
it is with the unconstrained dockings, and slightly higher than any of the con-
straints alone. The best explanation for this seems to be the antagonistic effects
of increasing the sampling of the rotation space. While, on the one hand, such
an increase increases the probability of not missing acceptable models during
the search, on the other hand, increasing the sampling density also increases the
number of incorrect models which can displace acceptable candidates from the
final set of 5000 models to retain. This seems to be why the two constraints
combined outperform either one alone, with the model redundancy constraint
mitigating the negative effects of increasing the rotational sampling as the probe
length increases, while the rotational redundancy constraint leads to a sample
of orientations better suited to the shape and size of the probe.

On the last quartile this improvement in the average number of acceptable
models retained is even more marked, being over 50%. This is particularly rele-
vant because these are the hardest complexes to predict. The tendency for larger
proteins to suffer greater conformational changes and the larger number of mod-
els to filter during the search result in significantly fewer acceptable models being
retained in the final set and increases the chances that none will be retained.
This is clear from the absolute values in the table. In these conditions, the re-
dundancy constraints provide an important advantage in the slight decrease in
failure rate and, in particular, in the significant increase in the number of accept-
able models retained. In these more difficult complexes, however, the number of
orientations sampled using the rotational redundancy constraint becomes larger
than the default of 6625, and thus the computation time also increases.

4 Conclusions and future work

This paper presents an improvement on the search and filtering stage of protein
docking using principles of constraint programming. By imposing constraints
that prevent redundancies in the rotational search and the retention of candi-
date models, the average number of acceptable models increases, failure rates
decrease slightly and computation times decrease in 75% of the cases. Of greater
advantage, the average number of acceptable models retained increases signifi-
cantly in the quartile corresponding to the most difficult complexes to model,
where an improvement in the quality of the results is most important. Fur-
thermore, since this is an algorithmic improvement that requires no additional
data, it can be combined with other constraints that BiGGER can use, such as
symmetry constraints [10] or constraints derived from predicted contacts [9].

There are still some open issues that we are currently exploring. The values
of 6Å for the displacement in the rotation constraint and 2.5Åfor the redundancy
of the models retained seem intuitively reasonable but must be systematically
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compared to alternative values in order to optimize these constraints. Further-
more, it is quite possible that the optimal values depend on the size of the probe,
especially for larger probes. We expect that the results presented here can be
improved by fine-tuning these parameters and, possibly, adapting them to the
size of the proteins involved. This work also focused on the effects of using these
constraints on the search and filtering stage. We are currently working on testing
these modifications on the full BiGGER docking pipeline currently under devel-
opment, which begins with the prediction of likely contacts from from sequence
data, proceeds with the constrained dockins and ends with the screening of the
retained complexes using more detailed scoring function.

The source code for the implementation of the methods described here is
available as part of the Open Chemera Library, at https://github.com/lkrippahl/
Open-Chemera. The source code is published in the public domain and is free of
any copyright restrictions.

Acknowledgements

This work was partially supported by funding from FCT MCTES and NOVA
LINCS, UID/CEC/04516/2013.

References

1. Chen, R., Li, L., Weng, Z.: Zdock: an initial-stage protein-docking algorithm. Pro-
teins: Structure, Function, and Bioinformatics 52(1), 80–87 (2003)

2. Dominguez, C., Boelens, R., Bonvin, A.M.J.J.: Haddock: a protein-protein docking
approach based on biochemical or biophysical information. J Am Chem Soc 125(7),
1731–1737 (Feb 2003)

3. Efron, B.: Bootstrap methods: Another look at the jackknife. The Annals of Statis-
tics 7(1), 1–26 (1979)

4. Halperin, I., Ma, B., Wolfson, H., Nussinov, R.: Principles of docking: An overview
of search algorithms and a guide to scoring functions. Proteins: Structure, Function,
and Bioinformatics 47(4), 409–443 (2002)

5. Hura, G.L., Menon, A.L., Hammel, M., Rambo, R.P., Poole Ii, F.L., Tsutakawa,
S.E., Jenney Jr, F.E., Classen, S., Frankel, K.A., Hopkins, R.C., et al.: Robust,
high-throughput solution structural analyses by small angle x-ray scattering (saxs).
Nature methods 6(8), 606–612 (2009)

6. Janin, J.: Assessing predictions of protein-protein interaction: the capri experiment.
Protein Sci 14(2), 278–283 (Feb 2005)

7. Katchalski-Katzir, E., Shariv, I., Eisenstein, M., Friesem, A.A., Aflalo, C., Vakser,
I.A.: Molecular surface recognition: determination of geometric fit between proteins
and their ligands by correlation techniques. Proceedings of the National Academy
of Sciences 89(6), 2195–2199 (1992)

8. Krippahl, L., Barahona, P.: Applying constraint programming to rigid body protein
docking. In: Beek, P. (ed.) Principles and Practice of Constraint Programming -
CP 2005. Lecture Notes in Computer Science, vol. 3709, pp. 373–387. Springer,
Berlin Heidelberg (2005)

123



Improving protein docking with redundancy constraints. 11

9. Krippahl, L., Barahona, P.: Protein docking with predicted constraints. Algorithms
for Molecular Biology 10(1), 9 (2015)

10. Krippahl, L., Barahona, P.: Symmetry constraints for modelling homo-oligomers.
In: 11th Workshop on Constraint Based Methods for Bioinformatics (2015)

11. Palma, P.N., Krippahl, L., Wampler, J.E., Moura, J.J.: Bigger: a new (soft) docking
algorithm for predicting protein interactions. Proteins 39(4), 372–384 (Jun 2000)

12. Roberts, V.A., Thompson, E.E., Pique, M.E., Perez, M.S., Ten Eyck, L.: Dot2:
Macromolecular docking with improved biophysical models. Journal of computa-
tional chemistry 34(20), 1743–1758 (2013)

13. Saff, E.B., Kuijlaars, A.B.: Distributing many points on a sphere. The mathemat-
ical intelligencer 19(1), 5–11 (1997)

14. Schneidman-Duhovny, D., Inbar, Y., Polak, V., Shatsky, M., Halperin, I.,
Benyamini, H., Barzilai, A., Dror, O., Haspel, N., Nussinov, R., et al.: Taking geom-
etry to its edge: fast unbound rigid (and hinge-bent) docking. Proteins: Structure,
Function, and Bioinformatics 52(1), 107–112 (2003)

15. Taylor, J.S., Burnett, R.M.: Darwin: a program for docking flexible molecules.
Proteins: Structure, Function, and Bioinformatics 41(2), 173–191 (2000)

16. Vreven, T., Moal, I.H., Vangone, A., Pierce, B.G., Kastritis, P.L., Torchala, M.,
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Abstract. We develop a method for solving genome scaffolding as a
problem of finding a long simple path in a graph defined by the contigs
that satisfies additional constraints encoding the insert-size information.
Then we solve the resulting mixed integer linear program to optimality
using the Gurobi solver. We test our algorithm on several chloroplast
genomes and show that it is fast and outperforms other widely-used
assembly algorithms by the accuracy of the results.
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problem, Gurobi

1 Introduction

High throughput sequencing (HTS) technologies provide millions of short genome
fragments, called reads, which need to be assembled into a genome of interest.
Today, most de-novo assemblers are based on de Bruijn graphs [12], whose ver-
tices are all k-mers (k-length subwords of the reads) and whose edges connect
all pairs of k-mers that share k − 1 consecutive characters. Genomes can then
be sought as maximal unambiguous paths in the de Bruijn graph. However,
complex regions of the genome (i.e. regions with many repeats) generally fail to
be assembled by this technique: if there are repeats (identical subregions of the
genome) longer than the size of the reads, the entire genome cannot be built in a
unique way. Various heuristics are used to bypass simple repeats, but they do not
guarantee correct solutions. Hence, producing a full genome consists of several
steps, namely assembly, scaffolding, and finishing, where the first step generates
a list of contigs that represent the easy assembly regions of the genome.

In the second step, scaffolding, which is the focus of this paper, reads are
linked together into scaffolds, which consist of sequence of contigs that overlap
or are separated by gaps of given length. These gaps are generated during se-
quencing based on paired-end or mate pair reads [14,10]. These special reads can
be represented as couples of fragments separated by a known distance (called
insert size). They bring a long distance information that can be used for con-
necting contigs generated by de-Bruijn graphs. Scaffolding, which uses the set of
contigs found during assembly and the insert-size information, is a very challeng-
ing problem, whose difficulties are rooted in technology imperfections including:
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– Insert sizes are not precise. The technology provides approximate distance
information only.

– For short contigs, which often represent short repeat regions, multiplicity
cannot be precisely determined. This information is given by analyzing the
coverage. Shorter the contig, worse the estimation.

– There may be erroneous contigs. Heuristics implemented for generating con-
tigs may lead to chimeric sequences that wrongly connect two regions of the
genome.

The difference between a contig and a scaffold is that a scaffold can contain
regions that have not been completely solved. For example, for two contigs that
have been unambiguously linked, the nucleotides sequence between them may
have not been determined due to sequencing problem, or very high structure
complexity. A last step (finishing) is generally required to enhance the scaffold.
Additional information, such as sequences of close species, can be exploited.

This paper focuses on scaffolding only. Given a set of contigs and their re-
lationships in terms of distances between them (insert sizes), we propose an
optimization-based approach for finding the genome sequence as the longest se-
quence that is consistent with the given contig and linkage information. Specifi-
cally, we define a graph, which we call contig graph, whose vertices are the contigs
and whose edges connect pairs of contigs that either overlap, or have a gap of
size given by the insert-size information. Edges have weights that encode the
corresponding distance information between the contigs and are negative in the
case of overlaps and positive in the case of gaps. Vertices have weights equal
to the lengths of the contigs they represent. Contigs with repeat factor s are
represented as a set of s vertices with the same sets of neighbors. The length of
a path in the resulting graph is defined as the sum of the weights of the vertices
and edges in it. The scaffolding problem is reduced to finding a longest simple
path such that as many as possible mate-pairs distances are satisfied (we call
hereafter such path just a longest path). Since both conditions cannot gener-
ally be simultaneously satisfied, our objective function is a linear combination
of them.

Unlike the shortest path problem, the longest path problem is NP-hard [3],
which means that no polynomial time solution is likely to exist for it. We solve
this problem by reformulating it as a mixed integer linear program (MILP)
and developing a method that can solve the resulting optimization problem on
genomes of up to 83 contigs and up to 900 binary variables. We analyze the
performance of the algorithm on several chloroplast genomes and compare it to
other scaffolding algorithms.

Most previous work on scaffolding is heuristics based, e.g., SSPACE [1],
GRASS [4], and BESST [13]. Such algorithms may find in some cases good so-
lutions, but their accuracies cannot be guaranteed or predicted. In contrast, our
method always finds a longest path in the contig graph. There is no guarantee
that the genome sequence corresponds to a longest path, but our experiments
show that that is the case in many instances or, if not, there is a very small
difference between the two. Exact algorithms for the scaffolding problem are
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presented in [15], but the focus of that work is on finding structural proper-
ties of the contig graph that will make the optimization problem of polynomial
complexity. In [11], integer linear programming is used to model the scaffolding
problem, with an objective to maximize the number of links that are satisfied.
In contrast, our objective is to maximize the length of the resulting scaffold.
Moreover, we aim at producing a single path or cycle, rather than a set of paths
and cycles. We believe that by requiring our solution to be a single path we avoid
the risk of producing a set of paths for which the objective function is of high
value, but which are inconsistent with a single path ordering. While our focus is
on accuracy, [11] focuses on efficiency, and indeed their algorithm is faster than
ours.

The contributions of this study are as follows:

– Our modeling of the scaffolding problem allows to solve simultaneously the
set of subtasks specific for this problem like: contigs orientation and ordering,
repeats, gap filling and scaffold extension.

– The scaffolding problem is reduced to finding a longest paths in a particular
graph. In addition, these paths need to satisfy a set of distances between cou-
ples of vertices along these paths. We are not aware of previous approaches
on scaffolding based on the longest path problem.

– We formulate the above problem as a mixed integer linear program (MILP)
with several interesting properties like: cycles elimination constraints, using
binary variables for the edges of the graph only. Vertices are modeled with
real variables, but we prove that the integrality of these variables follows
from other constraints.

– We tested this model on a set of chloroplast and bacteria genome data and
showed that it allows to assemble the complete genome as a single scaffold.
None of the publicly available scaffolding tools that we have tested targets
single scaffolds (this is corroborated by the obtained numerical results).

– Our numerical experiments indicate that the relaxation of the mixed integer
model is tight and produces upper bounds of excellent quality. This suggests
a promising direction of research towards the scalability of our approach.

In the next Section 2 we describe our graph model and the formulation of
the optimization problem and in Section 3 we present experimental results and
comparison with other algorithms.

2 Modeling the scaffolding problem

2.1 Graph Modeling

We model the problem of scaffolding as path finding in a directed graph G =
(V,E) that we call a contig graph, where both vertices V and edges E are
weighted. The set of vertices V is generated based on the set C of the contigs
according the following rules: the contig i is represented by at least two vertices
vi and v′i (forward/inverse orientation respectively). If the contig i is repeated
ki times, it generates 2ki vertices. Denote N =

∑
i∈C ki, therefore |V | = 2N .
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The edges are generated following given patterns—a set of known over-
laps/distances between the contigs. Any edge is given in the graph G in its
forward/inverse orientation. We denote by eij the edge joining vertices vi and
vj and the inverse of edge eij is ej′ i′ . For any i, the weight wi on a vertex vi
corresponds to the length of the contig i, while the weight lij on the edge eij
corresponds to the value of the overlap/distance between contigs i and j. The
problem then is to find a path in the graph G such that the total length (the
sum over the traversed vertices and edges) is maximized, while a set of additional
constraints are also satisfied:

– For any i, either vertex vi or v′i is visited (participates in the path).

– The orientations of the nodes does not contradict the constraints imposed
by the mate-pairs. This is at least partially enforced by the construction of
the graph.

To any edge e ∈ E we associate a variable xe. Its value is set to 1, if the
corresponding edge participates in the assembled genome sequence (the associ-
ated path in our case), otherwise its value is set to 0. There are two kinds of
edges: edges corresponding to overlaps between contigs, denote them by O (from
overlaps), and edges associated with mate-pairs relationships, denote them by L
(from links). We therefore have E = L ∪ O. Let le be the length of the edge e.
We have le < 0 ∀e ∈ O and le > 0 ∀e ∈ L. Let wv be the length of the contig
corresponding to vertex v and denote W =

∑
v∈V wv.

Let A+(v) ⊂ E (resp. A−(v) ⊂ E ) denote the subset of arcs in E leaving
(resp. entering) node v.

2.2 Integer Linear Programming Formulation

We associate a binary variable for any edge of the graph, i.e.

∀e ∈ O : xe ∈ {0, 1} and ∀e ∈ L : ge ∈ {0, 1}. (1)

Furthermore, to any vertex v ∈ V we associate three variables, iv, sv, and
tv, which stand respectively for intermediate, source, and target for some path,
and satisfy

0 ≤ iv ≤ 1, 0 ≤ sv ≤ 1, 0 ≤ tv ≤ 1. (2)

All three variables are set to zero when the associated vertex v participates in
none of the paths. Otherwise, it could be either a source/initial (noted by sv =
1, tv = 0, iv = 0), or a target/final (tv = 1, sv = 0, iv = 0), or an intermediate
vertex, in which case the equalities iv = 1, tv = 0 and sv = 0 hold. Moreover,
each vertex (or its inverse) can be visited at most once, i.e.

∀(v, v′) : iv + iv′ + sv + sv′ + tv + tv′ ≤ 1. (3)
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The four possibles states for a vertex v (to belong to none of the paths, or
otherwise, to be a source, a target, or an intermediate vertex in some path) are
provided by the following two constraints

sv + iv =
∑

e∈A+(v)

xe ≤ 1 (4)

and

tv + iv =
∑

e∈A−(v)
xe ≤ 1. (5)

Finally, only one sequence (a single path) is searched for

∑

v∈V
sv = 1 and

∑

v∈V
tv = 1. (6)

Theorem 1. The real variables iv, sv, tv,∀v ∈ V take binary values.

Proof. Let us analyse the four possibles cases deduced from (4) and (5). Denote
S+ =

∑
e∈A+(v) xe and S− =

∑
e∈A−(v) xe.

i) S+ = 0 and S− = 0.
In this case it follows from (2) that sv = iv = tv = 0.

ii) S+ = 1 and S− = 1.
The above is equivalent to sv +iv = 1 and tv +iv = 1, which leads to sv = tv.
Moreover, from (3) we have sv = tv = 0 and iv = 1.

iii) S+ = 1 and S− = 0.
The above is equivalent to sv + iv = 1 and tv + iv = 0, which leads to
sv − tv = 1. Hence, from (2), we have tv = 0 and therefore sv = 1 and
iv = 0.

iv) S+ = 0 and S− = 1.
This case is analogous to iii) and we have sv = iv = 0 and tv = 1. ut

We introduce a continuous variable fe ∈ R+ to express the quantity of the
flow circulating along the arc e ∈ E

∀e ∈ E : 0 ≤ fe ≤W. (7)

For e ∈ O, the value of xe is set to 1, if the arc e carries some flow and 0,
otherwise. In other words, no flow can use the arc e when xe = 0 as ensured by
constraint

fe ≤Wxe ∀e ∈ O. (8)

We use the flows fe in the following constraints

∀v ∈ V :
∑

e∈A−(v)
fe −

∑

e∈A+(v)

fe ≥ iv(wv +
∑

e∈A−(v)
lexe)−Wsv (9)
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Wsv ≤
∑

e∈A+(v)

fe. (10)

The purpose of the last two constraints is manifold. When a vertex v is a
source (sv = 1), (9) and (10) generate and output from it an initial flow of
sufficiently big value (W is enough in our case). When v is an intermediate
vertex (iv = 1), constraint (9) forces the flow to decrease by at least l(u,v) + wv

units when it moves form vertex u to its adjacent vertex v. The value of the flow
thus is decreasing and this feature forbids cycles in the context of (4) and (5).
When v is a final vertex, (9) is simply a valid inequality since the initial flow
value is big enough.

We furthermore observe that because of (5), the constraint (9) can be written
as follows

∀v ∈ V :
∑

e∈A−(v)
fe −

∑

e∈A+(v)

fe ≥ ivwv +
∑

e∈A−(v)
lexe −Wsv. (11)

The constraint (11) is linear and we keep it in our model instead of (9).

Furthermore, binary variables ge are associated with links. For (s, t) ∈ L,
the value of g(s,t) is set to 1 only if both vertices s and t belong to the selected
path and the length of the considered path between them is in the given interval
[L(s,t), L(s,t)]. Constraints related to links are :

g(s,t) ≤ ss + is + ts and g(s,t) ≤ st + it + tt (12)

as well as

∀(s, t) ∈ L :
∑

e∈A+(s)

fe −
∑

e∈A−(t)
fe ≥ L(s,t)g(s,t) −M(1− g(s,t)) (13)

∀(s, t) ∈ L :
∑

e∈A+(s)

fe −
∑

e∈A−(t)
fe ≤ L(s,t)g(s,t)) +M(1− g(s,t)), (14)

where M is some big constant.

We search for a long path in the graph and such that as much as possible
mate-paired distances are satisfied. The objective hence is :

max(
∑

e∈O
xele +

∑

v∈V
wv(iv + sv + tv) + p

∑

e∈L
ge) (15)

where p is a parameter to be chosen as appropriate (currently p = 1).

Remark: Note that omitting constraints (6) from the above model generates
a set of paths that cover ”optimally” the contig graph, rather than a single path.
We have tested this variant of the model, but the obtained solutions were too
much fragmented and of worse quality compared to the single-path model.
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3 Computational results

Here we present the results obtained on a small set of chloroplast and bacteria
genomes given in Table 1. Synthetic sequencing reads have been generated for
these instances applying ART simulator [7]. For the read assembly step required
to produce contigs we applied minia [2] with parameter unitig instead of contig
(a unitig is a special kind of a high-confidence contig). Based on these unitigs,
the overlaps between them, as well as the mate-pair distances, we generated a
graph as explained in Section 2.1. The graph generated for the Atropa belladonna
genome is given in Figure 1.

We compared our results with the results obtained by three of the most
recent scaffolding tools– SSPACE [1], BESST [13], and Scaffmatch [9]. In order
to evaluate the quality of the produced scaffolds, we applied the QUAST tool [5].
The results are shown on Table 2. We observe that our tool GST (from Genscale
Scaffolding Tool) is the only one that consistently assembles the complete genome
(an unique scaffold in #scaffolds column) with more than 98% (and in four cases
at least 99.9%) correctly predicted genome fraction and zero misassembles.

Our results were obtained on a standard laptop (Intel(R) Core(TM) i3-4000M
with 2 cores at 2.4 GHz and 8 GB of RAM), and using Gurobi [6] for solving
the MILP models.

Datasets Total length #unitigs #nodes #edges #mate-pairs

Acinetobacter 3 598 621 165 676 8344 4430

Wolbachia 1 080 084 100 452 7552 2972

Aethionema Cordifolium 154 167 83 166 898 600

Atropa belladonna 156 687 18 36 114 46

Angiopteris Evecta 153 901 16 32 144 74

Acorus Calamus 153 821 15 30 134 26

Table 1: Scaffolding datasets.

Our next computational experiments focussed on comparing various relax-
ations and other related formulations for the MILP model described in the pre-
vious section. Let us denote in the sequel by BR (Basic Real) the model defined
by the linear constraints (1), (2), (3), (4), (5), (6), (7), (8), (11), (10), (12), (13),
(14) and objective function (15). Let BB (from Basic Binary) denote the same
model except that constraint (2) is substituted by its binary variant, i.e.

∀v ∈ V : iv ∈ {0, 1} and sv ∈ {0, 1} and tv ∈ {0, 1}. (16)

According to Theorem 1, the models BB and BR are equivalent in quality
of the results. We are interested here in their running time behavior. We study

131



Fig. 1: The contig graph generated for the Atropa belladonna genome. Red/blue
vertices correspond respectively to big/small contigs.

132



Fig. 2: The scaffold obtained for Atropa belladonna’s genome shown on Figure 1.
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Datasets Scaffolder Genome #scaffolds # mis- N’s per
fraction assemblies 100 kbp

Acinetobacter GST 98.536% 1 0 0

SSPACE 98.563% 20 0 155.01

BESST 98.539% 37 0 266.65

Scaffmatch 98.675% 9 5 1579.12

Wolbachia GST 98.943% 1 0 0

SSPACE 97.700% 9 0 2036.75

BESST 97.699% 49 0 642.90

Scaffmatch 97.994% 2 2 3162.81

Aethionema Cordifolium GST 100% 1 0 0

SSPACE 95.550% 20 0 13603.00

BESST 81.318% 30 0 1553.22

Scaffmatch 82.608% 7 7 36892

Atropa belladonna GST 99.987% 1 0 0

SSPACE 83.389% 2 0 155.01

BESST 83.353% 1 0 14.52

Scaffmatch 83.516% 1 0 318.93

Angiopteris Evecta GST 99.968% 1 0 0

SSPACE 85.100% 4 0 0

BESST 85.164% 2 0 1438.54

Scaffmatch 85.684% 1 0 454.23

Acorus Calamus GST 100% 1 0 0

SSPACE 83.091% 4 0 126.39

BESST 83.091% 4 0 127.95

Scaffmatch 83.271% 1 1 3757.13

Table 2: Performance of different solvers on the scaffolding datasets from Table 1.
GST is our tool.
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as well the linear programming relaxation of BR (denoted by BRLP ) where the
binary constraints (1) are substituted by

∀e ∈ O : 0 ≤ xe ≤ 1 and ∀e ∈ L : 0 ≤ ge ≤ 1. (17)

Furthermore, let us relax in BR model all constraints related to mate-pairs
distances (i.e. constraints (12, (13), (14)). We also omit from the objective func-
tion the last term that is associated to mate-pairs. Let us call this model LP
(Longest Path) since it simply targets to find the longest path in the contig
graph. Any solution of this model can be extended to a solution of BR model
by a completion ge = 0 ∀e ∈ L. Its optimal value yields a lower bound for the
main model BR.

The results obtained by each one of these models are presented in Table 3.
From these results we first observe that, as expected, the model BR outperforms
BB in running time. With respect to the quality of the obtained results, the re-
sults with the relaxed models are very encouraging. The upper bounds computed
by the linear relaxation BRLP are extremely close to the exact values computed
by BR model. Furthermore, the quality of the lower bound found by the longest
path approach LP is also very good. Interestingly, we observed for the given
instances that this value is close to the genome’s size. We presume that the LP
model can be used for predicting the length of the genome when it is unknown.

4 Conclusion

We developed and tested algorithms for scaffolding based on a version of the
longest path problem and MILP representation. Our algorithms significantly
outperform three of the best known scaffolding algorithms with respect to the
quality of the scaffolds. Regardless of that, we consider the current results as a
work in progress. The biggest challenge is to extend the method to much bigger
genomes. We plan to use some additional ideas and careful implementation to
increase the scalability of the methods without sacrificing the accuracy of the
results.
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Abstract. This paper presents a constraint-based approach for genome
scaffolding, which is one important step in genome whole sequence pro-
duction. We model it as an optimization problem on a graph built from a
paired-end reads mapping on contigs. We describe our constraint model
using a graph variable representation with classical graph constraints.
We tested our approach together with several search strategies, on a
benchmark of various genomes.

1 Introduction

Last decade was marked by the race to the production of new genomic sequences.
Since new technologies of sequencing, known as High Throughput Sequencing
(HTS ) or New Generation Sequencing (NGS ), are available, price of genome se-
quencing has consequently dropped. Technological advances in sequencing, but
also in computer science, allow to conduct studies involving tens of thousands
of genomes of the same species or related species. The projects "1000 genomes"
bloom, and necessit a phenomenal processing power. However HTS is mostly
based on a technology which splinters the genomic sequence, resulting in a
large amount of paired-end reads even for quite small genomes. Most sequencing
projects are experiencing bottlenecks in the production of complete sequences
from the sequencing libraries, and produce genomes often in draft form. Hence,
assembling and scaffolding steps have to be as optimized as possible to obtain a
satisfying solution in reasonable time. One of the crucial steps involved in this
process is genome scaffolding. Once sequencing and assembly of DNA molecules
have been performed, we end up with a set of genomic sequences of various
lengths, called contigs, representing pieces of genome. The main goal of scaf-
folding process is to find an order and an orientation on these contigs such that
resulting collections of oriented contigs map as good as possible to the reference
genome. Such collections are named scaffolds and would ideally represent the
genome chromosomes, which could be either linear or circular.

The scaffolding process has been modeled as various combinatorial problems
which are unfortunately computationally hard [1,2]. This observation naturally
encourages to try different ways to solve the problem, from heuristic, approxi-
mation or exact resolution point of view. Most of current scaffolding solvers use
heuristic methods to solve this problem. These solvers, unfortunately, do not
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propose any confidence on the optimality of the solution they return. Some of
them, like Bambus [3], SSPACE [4] and SSAKE [5], directly solve the graph
problem using greedy algorithms. Their first obvious interest is their time com-
plexity, since the corresponding algorithms are strictly polynomial. However, the
solution may be very faulty since the graph is sometimes simplified and because
it only guarantees a local maximum. Other solvers like Bambus2 [6] uses struc-
tures recognition and NP-hard problem’s approximations to generate scaffolds.
Opera [7] uses a graph contraction method before solving the scaffolding on the
smaller contracted graph. However, the contraction step may alter the original
graph such that the optimal solution on the contracted graph is not optimal on
the original one. SCARPA [8] combines Fixed Parameter Tractable algorithm
(to remove odd cycles on the original graph) and mixed integer programming
(to join contigs in scaffolds). Once again the yielded solution is not necessarily
the optimal solution, because of the odd cycle deletion. GRASS [9] and MIP
Scaffolder [10] use mixed integer programs to solve the scaffolding problem, but
always on a simplified graph and then can not be considered as exact methods
either.
A previous work using an incremental strategy and Integer Linear Programming
(ILP) was proposed in [11]. After several attempts to model the scaffolding prob-
lem with CSP, the authors finally chose a simple ILP formulation instead, in
order to achieve scalability. However, this formulation was not totally satisfying,
since it could not prevent from small circular chromosomes in the solution. Thus,
it has to be cured with an iterative treatment to forbid those cycles. As one can
observe, there is no solver offering exact resolution for the scaffolding problem,
possibly resulting in different solutions from different solvers working on a same
graph. In the present work, we choose the CSP approach, to attack this prob-
lem. Using a recent library, dedicated to graphs, namely Choco-graph3 [12], we
formulate the contig scaffolding problem in a simple manner, given in Section 3.
We discuss how search strategies could have an effect on the efficiency of the
method, and run some experiments on a dataset of small instances, in Section 4.

2 Notation and description of the problem

In what follows, we consider G = (V,E) an undirected graph with an even num-
ber 2n of vertices and without self loops. We suppose that there exists a perfect
matching in G, denoted by M∗. Let w : E → IN be a weight function on the
edges. In the bioinformatic context, edges inM∗ represent contigs, and the other
edges figure the ways to link the contigs together, their weight representing the
support of each of these hypotheses (e.g. the number of pairs of reads matching
on both contigs). Figure 1 shows an example of a scaffold graph.

3 https://github.com/chocoteam/choco-graph
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Fig. 1. A scaffold graph with 17 contigs (bold edges) and 26 (weighted) links between
them, corresponding to the ebola data set (see Section 4). Contig-edges in green and
blue correspond to contig of size small enough to be inserted between two other contigs,
leading to possible misplacements in the final scaffolding. Green contigs are still well
placed in the solution, but blue one are ambiguous.

In order to model the genomic structure by fixed numbers of linear (paths)
and circular (cycles) chromosomes, the class of considered problems are param-
eterized by two integers, respectively denoted by σp and σc. These parameters
correspond to what is desired as genomic structure, however it is not always
possible to exactly obtain this structure. Thus we consider a relaxed version of
the problem, called Scaffolding, together with the original one, denoted as
Strict Scaffolding.

We may use the notation Gr(·) to denote the induced graph of an edge set.
For instance, let G = (V,E) be a graph, then Gr(E) = G.

In the following, we call alternating cycle (resp. alternating path) in G, rel-
atively to a perfect matching M∗ of G, a cycle (resp. a path) with edges al-
ternatively belonging to M∗ or not (resp. and where extremal edges belong to
M∗). Notice that an alternating-cycle (resp. alternating-path) has necessarily an
even number of vertices, at least four (resp. two). The class of Scaffolding
problems are defined as follows:

Scaffolding (SCA)
Input: G = (V,E), ω : E → N, perfect matchingM∗ in G, σp, σc, k ∈ N
Question: Is there an S ⊆ E\M∗ such that Gr(S∪M∗) is a collection of
≥ σp alternating paths and ≤ σc alternating cycles and ω(S) ≥ k?
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The variant of the problem that asks for exactly σp paths and exactly σc cycles
is called Strict Scaffolding (SSCA). When we want to precise particular
values for σp and σc, we refer to the problem as (σp, σc)−Scaffolding. We
refer to the optimization variants of Scaffolding that ask to minimize or
maximize ω(S) as Min Scaffolding and Max Scaffolding, respectively. In
what follows, we mainly focus on both problems Max Scaffolding and Max
Strict Scaffolding, which correspond to the bioinformatic problem.

Problems Strict Scaffolding and Scaffolding received much attention
in the framework of complexity and approximation [2,13]. In these articles, the
authors showed the hardness of Scaffolding even in presence of restricted pa-
rameters or graph classes (cycle length, bipartite planar graph, tree, . . .). Some
lowers bounds according to complexity hypothesis (P 6= NP, ET H) are proposed
using the Gap-reduction, and reduction preserving lower bound in the field of
exact exponential time algorithms. On positive side, some upper bounds with
efficient polynomial-time approximation algorithms are designed. Theoretical as-
pects of Scaffolding are completed by a parameterized complexity approach
in [14] and [13]. In such context, the authors proposed some negative results
about the quest of a polynomial kernel, or a FPT -algorithm.

3 Model and algorithms

In this section, we propose to solve, sometimes to optimality, the Strict Scaf-
folding problem with Constraint Programming. First, we remind some defini-
tions, especially on not so classical graph variables. Then we describe variables
and constraints used to model Strict Scaffolding. Finally we describe search
strategies used to solve the optimization problem.

a - Constraint Programming Definitions

Definition 1. A domain of a variable x, denoted D(x), is a bounded set of
values which can be affected to x. We note x (resp. x) the lower bound (resp.
upper bound) of domain D(x).

Definition 2. A constraint Ci ∈ C on the subset of m variables X (Ci) =
{xi1 , xi2 , . . . , xim} is a subset of D(xi1)×D(xi2)× . . .×D(xim). It determines
the m-tuples of values allowed to be assigned to variables xi1 , xi2 , . . . , xim .

Definition 3. A CSP is a triplet (X ,D,C), where X = {x1, x2, . . . , xn} is a set
of variables, D = {D(x1), D(x2), . . . , D(xn)} is a set of domains describing the
different values which could be assigned to the variables in X and C is a set of
constraints between the variables in X .

Definition 4. A solution of a CSP is a set of assignments of values to vari-
ables, {(x1, a1), (x2, a2), . . . , (xn, an)}, with ∀i ∈ [1, n], ai ∈ D(xi), satisfying all
constraints in C.
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Let us remark these general definitions related to CSP do not fix the pos-
sible types of variables yet. Classically, we manipulate integer values in integer
domains for integer domain variables, but more recently, set variables were in-
troduced and even graph variables [15,16], yielding easier modeling. We exploit
here those improvements to expressivity.

Concerning a set variable x, there exists a compact representation of the
domain D(x), where we specify two sets of elements [17]: the set of elements
that must belong to the set assigned to x (which we still call the lower bound
x) and the set of elements that may belong to this set (the upper bound x).
The domain itself can be represented as a lattice structure corresponding to the
partial order defined by sets inclusion. When defined in Choco, a set variables
are encoded with two classical bounds: the union of the all set of possible values
called the envelope and the intersection of all set of possible values called the
kernel.

Generalizing this point of view, a graph can be seen as two sets V and E with
an inherent constraint specifying that E ⊆ V ×V . The domain D(G) of a graph
variables G is specified by two graphs: a lower bound graph G and an upper
bound graph G, such that the domain is the set of all subgraphs of the upper
bound which are supergraphs of the lower bound. For a better understanding
of graph variables, we refer to Section "3.10. Graph based Constraints" of the
Global Constraint review [18],

b - Constraint Model

Variables As previously described, we introduce an undirected graph variable
Gv(V v,Ev) (Gv for Graph variable) whose value will represent the underlying
solution. The variable Gv(V v,Ev) is derived from the graph G(V,E) previously
defined in Section 2, with allowed self loops on vertices. Although in the original
formulation of Strict Scaffolding problem, there are no self loops allowed,
here they will help us to differentiate cycles, which do not contain any, and paths
with a final loop on each extremity. A self loop incident to a vertex u counts for
one in its degree. All vertices are mandatory and simply belong to Vv. Edges in
M∗ are also mandatory and belong to Ev. We will look for a solution by adding,
or not, remaining edges to the kernel.

For cost optimisation, we decide to manipulate only |V v| integer variables to
handle the positive weights on a solution. Let’s remark this is a more compact
model than having |Ev| variables to represent null of positive weights on edges.
We denote by wmax the maximum weight of an edge that could be met in the
graph, and E = (Eij) a boolean variable matrix channeling the graph Gv (i.e. if
edge between i and j is in the kernel, Eij = 1; if the edge is out of the envelope,
Eij = 0; else domain is {0, 1}) The integer variables are:

– a vectorWeights of size |V v|. The variableWeights[u] represents the sum of
weights of edges incident to node u in the solution. Its domainD(Weigths[u])
is the set {0, . . . , wmax+1}. In order to count each weight only once in the
solution, we derive from the weight function w defined in Section 2 an upper
triangle weight matrix denoted by w∗.
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– a variable TotalWeight to sum up all the Weights. We can restrict initial
domain of TotalWeight to lower and upper bound computed by any heuristic
described in previous sections. Here it belongs to {0, . . . , |V v| ∗ wmax}.

We define the following constraint model, very simply defining the problem:

CSP Model : Scaffold Problem with Graph Var and Graph Constraints

connected_components(Gv, σp + σc) (1)

minDegree(Gv, 2) (2)

maxDegree(Gv, 2) (3)

nbLoops(Gv, 2σp) (4)

Weights[i] =
∑

j∈V v

(wijEij) ∀ i ∈ V v (5)

TotalWeight =
∑

i∈V v

Weights[i] (6)

In Equation 1, Gv is constrained to have a specific number of connected com-
ponents (σp+σc). By default choco solver use fast filtering rules, first computing
all connected components of G by performing one Depth First Search (using
Tarjan algorithm [19]) where time complexity is O(|V v|+ |Ev|) and check their
number according to the parameters. If necessary, better propagation can be
performed by looking for articulation points in time complexity O(|V v|.|Ev|),
or even better by managing dominator [20]. This was not necessary in choco to
get good performances.

In Equation 2 and Equation 3, we linearly maintain degree for each node
u in Gv by checking size of upper bound and lower bound of variable-set Eu,
designing edges incident to vertex u, and if necessary by applying complete
filtering, removing (or forcing) associated edges. Moreover, since M∗ ⊆ Ev we
necessarily construct alternating paths and cycles when adding consistent edges
to the kernel.

In Equation 4, number of nodes with self loop is linearly maintained to adjust
the parameter with complete filtering when bounds are reached. As explained,
a cycle will not have self loops but paths will have it at extremities (only one
due to upper triangle matrix). Then, without the need to distinguish paths and
cycles, this constraint guarantees the solution to have exactly σp paths. Since
Equation 1 fixes the number of connected components, we also have exactly σc
cycles.

The remaining Equation 5 and Equation 6 are simple scalar constraints.
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c - Search Strategies

As search implementation, we use different variables families (branching on
edges or directly branching on cost) and we focus on ordering the variables to
be assigned. We test :

1. a static lexicographic strategy assignment on edges (Eij), meaning that vari-
ables are simply not sorted;

2. a random strategy on edges (Eij) with max value first, which help us to have
a median behavior on edges branching;

3. a dynamic variable ordering heuristic, called dom over wdeg, applied to
weight variables (default strategy in our solver). This strategy consists in
ordering the involved variables by increasing size of domain, combined with
a weighted sum on the constraints they belong to. This strategy is supposed
to well behave for a majority of problems [21];

4. a maximum value strategy on cost: as we have to maximize the TotalWeight
variable, we use a standard max domain value strategy first on Weights
variables: by propagation, assigning first edges with biggest weights leads to
connect edges with maximum numbers of pairs of reads mapping on both
contigs;

5. a max-regret strategy: assigning first edge with biggest weight for variable
with biggest difference between maximum and previous value in domain (aka
regret, if not chosen). This last strategy yields usually good results on such
"max

∑
" optimization problem.

4 Experiments

Scaffold graphs used to run our experiments are coming from two sources. A
first dataset, called real instances, has been build using the following pipeline:

1. We choose a reference genome, on a public database, for instance on the
Nucleotide NCBI database4. Table 1 shows the selected genomes used to
perform our experiments. They were chosen because of their various origins:
a virus, an insect, a plant and a yeast; and their small size: two of them
comes from organelles, a mitochondrion and a chloroplast, which have small
genomes.

2. We simulate paired-end reads, using a tool like wgsim [22]. The chosen pa-
rameters are an insert size of 500bp and a read length L of 100bp.

3. We assemble those simulated reads using a de novo assembly tool, based on
a de Bruijn graph efficient representation. This tool is minia [23], and was
used with a size k = 30 for the k-mers stored in the de Bruijn graph.

4. We map the reads on the contigs, using bwa [24]. This mapping tool was
chosen according to results obtained in [25], a survey on scaffolding tools.

5. We generate the scaffold graph from the mapping file. Statistics on number
of vertices and edges in produced scaffold graphs can be viewed on Table 2.

4 http://www.ncbi.nlm.nih.gov/
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Table 1. Dataset of real instances.

Species (Alias) Size (bp) Type Accession number
Zaire ebolavirus (ebola) 18959 Complete genome NC_002549.1

Danaus plexippus (monarch) 15314 Mitochondrion NC_021452.1
Oryza sativa Japonica (rice) 134525 Chloroplast X15901.1

Saccharomyces cerevisiae (sacchr3) 316613 Chromosome 3 X59720.2
Saccharomyces cerevisiae (sacchr12) 1078177 Chromosome 12 NC_001144.5

Since it is quite complicated to find real instances through fully meeting
needed parameters, especially size of the scaffold graphs, and to perform av-
erage analysis on classes with only one element, a second dataset of gener-
ated scaffold graphs was used to complete the size gap between our real in-
stances: the rice scaffold graph counts 84 contigs, but sacchr3 counts 296, and
sacchr12 counts 889. Instances were generated by the tool Grimm [26]. The pa-
rameters used to generate this dataset were chosen to be similar to the ones
observed on real instances. However we are conscious that they do not exactly
meet the reality. A set of thirty instances were generated by pair of parameters
(#vertices,#edges): these pairs come from real instances parameters, completed
by {(200, 300), (300, 450), (400, 600), (500, 750)}.

We run experiments on a MacBook Pro with Intel i7 2.8Ghz processor and
4 Go RAM. First we evaluate each of the previously described strategies. Then,
using the best strategy, we solve the real instances and discuss the convenience of
such modeling. Finally, we compare obtained results to previous ILP approach.

5 Results

Testing search strategies.

Figure 2 shows the comparison between the different tested search strategies
on a generated instance with 200 vertices. Scores shown on this figure is simply
the total weight of the current solution. As expected, lexicographic and random
strategies on edges do not perform well. This is due to the fact that scaffold
graph have a very peculiar structure. They are sparse, and as one can see on
Figure 1, the degree of vertices is quite small. For cost based strategies, surpris-
ingly the standard max value performs very well contrary to max regret. We can
explain this by the correlation between weight value (based on the number of
bridging reads) and the probability that this will be a good link. Weight value
are not randomly distributed but are extracted from partial information (reads)
coming from a precise structure (the underlying connected structuration of the
chromosome).

Let’s remark that default dom/wdeg shows its classical robust good behavior
without any knowledge !

In what follows, all experiments were performed using the max value strategy.

Results on real instances.
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Fig. 2. Comparison of search strategies.

Table 2. Search for optimal solutions on real instances.

Instances parameters first sol optimality
name nbContigs nbEdges σp σc value searchNodes time (s) value searchNodes time (s)

monarch 14 19 5 0 520 16 0.013 520 16 0.013
ebola 17 26 3 1 793 20 0.026 793 20 0.026
ebola 17 26 4 0 707 42 0.040 707 56 0.123
rice 84 139 12 0 4377 106 0.091 4382 147k 177

sacch3 296 527 36 0 14845 406 0.48 > 1M >3600
sacch12 889 1522 118 1 Out of Memory
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As one can observe in Table 2, we tested our program on several scaffold
graphs produced from biological data. It is interesting to note that the first
solution has already a high score and is found very quickly (less than one second
with very few backtracks). Having a closer look to ebola, we noticed that scaffold
graphs may contain what we call bad contig jumps, meaning there exists a contig
a which should appear between two contigs b and c in the genome but such that
the optimal solution does not contain {a, b, c} in any scaffold. When the contig a
is not included in the solution at its place in a path, we say that it is a forgotten
contig. Necessarily, the length of a is small enough to be inserted in the gap
between b and c, the latter being smaller than the insert size of the library.
For instance, the ebola graph should ideally contain one unique linear scaffold
representing the linear chromosome of ebola. Nevertheless, the optimal solution
contains at least four scaffolds because it exists forgotten contigs which can be
considered as scaffolds on their owns. On Figure 1, two small contigs appear
without any bad consequence, namely 0-1 and 32-33. Indeed, the optimal path
includes them. However, other cases are not so easy to solve: for instance the
ambiguity between paths 31-30-16 and 13-12-16 leads to choose the latter one,
only considering weights. But it is a hidden contig jump, and further examination
of inter-contig distances should be included to disambiguate and include both
contigs 12-13 and 30-31 in a same path of the solution. Same situation occurs for
paths 4-5-3 and 10-11-4. Case of contig jump 14-15 is quite different: the sums
of weights on side edges 6-15 and 14-17 is less that the weight of the "by-pass"
edge 6-17. In such case, contig 14-15 is not included in the solution. In a nutshell,
contigs 30-31, 4-5 and 14-15 are forgotten contigs, explaining the four scaffolds
instead of only one expected. Here, we express the necessity to pre-process the
graph to treat such contigs and we will consider it as a priority in our future
works.

Comparison to previous ILP approach In [11], we proposed an ILP based in-
cremental approach, which was able to heuristically handle large instances. The
underlying idea is very simple and consists in optimizing the score, under con-
straints on degrees, and use an external treatment to forbid detected cycles. We
ran this tool on our real dataset. The main difference with actual model is that
we considered only cases with paths, and systematically forbade cycles. Thus,
the actual model is more expressive, since it allows a given number of cycles.

Table 3. Comparison with previous ILP approach.

Instances first sol optimality ILP [11]
name value time (s) value time (s) value time (s)

monarch 520 0.013 520 0.013 507 0.00025
ebola 793 0.026 793 0.026 776 0.00028
rice 4377 0.091 4382 177 4320 0.00036

sacch3 14845 0.48 >3600 14616 0.0071
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Table 3 shows comparison of solving time and scores between Choco-graph
and ILP heuristic. What is noticeable is that, as expected, computation time
stays very low when the size of instances increases, and that ILP does not provide
an optimal score on these instances. More surprisingly, the score given by first
solution is better than ILP score, meaning that efforts made on modelization are
somehow rewarded.

6 Conclusion and future works

Classically, modeling real problems brings a gap between customers and mod-
elers. Here, a first gap exist between biologist researchers and bioinformatic
researchers to express biological problem into graph modeling problem. Con-
straint Programming provides a natural declarative way to express constraints
on a given problem without worsen the modeling gap between combinatorial
problem description and combinatorial solvers resolution, contrary to what hap-
pened with previous attempts using SMT, SAT or ILP models. Moreover, the
Graph variable development are absolutely convenient to the modeling of com-
binatorial problems on graphs and we present here a typical example where its
usefulness is demonstrated. Although the underlying problem is NP-hard, and
there is no hope to quickly solve very large instances in a reasonable time, we
could improve solving time by introducing more constraints to help propagation
efficiency. For instance, by considering contig lengths and expected lengths of
chromosome, if it is known, we could set the minimum length of a cycle or a
path. Or, considering that we could not guarantee that all linking information
are provided by the original scaffold graph, we could consider only a maximum
number of cycles, but allows the number of paths to be itself a variable. Finally,
it would be interesting to embed the solver in an interactive tool which allows
an expert user to solve and visualize on a given instance.
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